High resolution NO$_2$ remote sensing from the Airborne Prism EXXperiment (APEX) imaging spectrometer

C. Popp1, D. Brunner1, A. Damm2, M. Van Roozendael3, C. Fayt3, and B. Buchmann1

1Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
2Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
3Belgian Insitute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, 1180 Brussels, Belgium

Received: 1 March 2012 – Accepted: 19 March 2012 – Published: 28 March 2012

Correspondence to: C. Popp (christoph.popp@empa.ch)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

We present and evaluate the retrieval of high spatial resolution maps of NO\textsubscript{2} vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO\textsubscript{2} VCD are derived with a two-step approach usually applied to satellite NO\textsubscript{2} retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations.

Our analysis demonstrates that APEX is clearly sensitive to NO\textsubscript{2} VCD above typical European tropospheric background abundances \((>1 \times 10^{15} \text{ molec cm}^{-2})\). The two-dimensional maps of NO\textsubscript{2} VCD reveal a very plausible spatial distribution with strong gradients around major NO\textsubscript{x} sources (e.g. Zurich airport, waste incinerator, motorways) and low NO\textsubscript{2} in remote areas. The morning overflights resulted in generally higher NO\textsubscript{2} VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day (development of the boundary layer and increased wind speed in the afternoon) as well as to photochemical loss of NO\textsubscript{2}. The remotely sensed NO\textsubscript{2} VCD are also highly correlated with ground-based in-situ measurements from local and national air quality networks \((R = 0.73)\). Airborne NO\textsubscript{2} remote sensing using APEX will be valuable to detect NO\textsubscript{2} emission sources, to provide input for NO\textsubscript{2} emission modeling, and to establish links between in-situ measurements, air quality models, and satellite NO\textsubscript{2} products.

1 Introduction

Nitrogen dioxide (NO\textsubscript{2}) is an important reactive trace gas in the troposphere. NO\textsubscript{2} acts as an ozone and aerosol precursor and can directly or indirectly affect human
health (e.g. pulmonary or cardiovascular diseases) (Brunekreef and Holgate, 2002) and ecosystem functions and services (e.g. damage of leaves, reduction of crop production, acidification) (Bell and Treshow, 2002). Besides natural sources such as lightning and soil emissions the major fraction of tropospheric NO\textsubscript{2} is related to anthropogenic activities, notably fossil fuel combustion by traffic and industry. Despite significant improvements of air quality in European countries during the past two decades, air quality thresholds are still frequently exceeded and further efforts are needed particularly regarding reductions of particulate matter, ozone, and nitrogen oxides (NO\textsubscript{x} = NO + NO\textsubscript{2}). Measurements of NO\textsubscript{2} in the troposphere are performed with various in-situ, airborne, and spaceborne instruments. Tropospheric vertical column densities (TVCD) retrieved from satellites (e.g. from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), the Global Ozone Monitoring Experiment (GOME(-2)), or the Ozone Monitoring Instrument (OMI)) have largely contributed to a better understanding of the global distribution of NO\textsubscript{2} as well as its sources and trends (e.g. Boersma et al., 2004; Richter et al., 2005; van der A et al., 2008; Zhou et al., 2012). The spatial resolution of satellite products in the order of multiple tens of kilometers is only sufficient to detect aggregate sources like entire cities (Beirle et al., 2011) and individual sources like emissions from power plants (Kim et al., 2006) or ships (Beirle et al., 2004) if they are sufficiently separated in space from other sources. Ground-based in-situ instruments, on the other hand, provide accurate and continuous trace gas measurements but lack of homogeneous geographical coverage. Airborne remote sensing observations can in this regard provide a valuable link between ground-based and spaceborne NO\textsubscript{2} information. For example, airborne multi-axis differential optical absorption spectroscopy (AMAXDOAS) was used to retrieve NO\textsubscript{2} TVCD (Wang et al., 2005), NO\textsubscript{2} profile information (Bruns et al., 2006), or to validate SCIAMACHY NO\textsubscript{2} TVCD (Heue et al., 2005). Heue et al. (2008) demonstrated the capability of an imaging DOAS instrument to retrieve two dimensional NO\textsubscript{2} distributions over the highly polluted Highveld plateau in South Africa.
The Airborne Prism EXperiment (APEX) imaging spectrometer is a state-of-the-art instrument with an unprecedented combination of high spectral and spatial resolution, good two dimensional geographical coverage, and high signal stability. Two NO$_2$ distribution maps were retrieved from imaging spectrometer data acquired over Zurich, Switzerland, in the morning and the late afternoon of 26 June 2010. Our results are considered as one of the first spatio-temporal investigations of the NO$_2$ distribution on a regional to local scale. In particular, we present the first high resolution maps of NO$_2$ VCD in a city measured by an airborne imaging spectrometer. The specific objectives of this study are (i) the presentation of a retrieval scheme to obtain NO$_2$ quantities from APEX imaging spectrometry data and (ii) the qualitative and quantitative assessment of the NO$_2$ products, considering amongst others in-situ measurements of NO$_2$.

2 Instrument and data acquisition

2.1 The APEX instrument

APEX is a dispersive pushbroom imaging spectrometer for environmental monitoring developed by a Swiss-Belgium consortium in the framework of the ESA-PRODEX programme (Itten et al., 2008). APEX consists of the imaging spectrometer itself, a Calibration Home Base (CHB) for instrument calibration, and a data Processing and Archiving Facility (PAF) for operational product generation (Jehle et al., 2010). Table 1 gives a brief overview of the sensor characteristics.

The APEX imaging spectrometer consists of a CCD detector for the visible and near infrared (VNIR) and a CMOS detector for the shortwave infrared (SWIR) wavelength region. The NO$_2$ retrieval is based on absorption bands in the UV/VIS spectral domain and, hence, only the VNIR specification is discussed hereinafter. Since atmospheric trace gases exhibit spectrally narrow absorption features, the (spectrally) unbinned configuration was applied to provide highest spectral resolution. The spectral sampling interval (SSI) and the full width half maximum (FWHM) are non-linear functions of
the wavelength and increase with longer wavelengths. According to pre-flight sensor calibration, the SSI increases from 0.63 to 1.44 nm and the FWHM from 0.83 to 1.66 between 420 nm and 520 nm where NO$_2$ slant column densities (SCD) are usually derived. APEX is a pushbroom scanner and measures radiances in 1000 spatial pixels across-track. The extent of the flight line along-track depends on the pre-defined flight pattern. The spatial resolution in across-track direction is determined by the sensor’s instantaneous field of view (IFOV) of 0.028°. The spatial resolution along-track depends on the integration time. This unparalleled combination of high resolution, geographical coverage, and high signal stability makes APEX very attractive for a range of remote sensing applications, e.g. in the fields of vegetation, atmosphere, limnology, geology, or natural hazard studies.

2.2 Test site and data

Within the APEX acceptance flight campaign in 2010, extensive data acquisition activities took place over Belgium and Switzerland. Six of these image data sets were acquired in unbinned mode over Zurich, Switzerland, on Saturday 26 June (c.f. Fig. 1). Three of them were flown around 10:00 local time (08:00 UTC) and three in the late afternoon around 17:30 local time (15:30 UTC). The data was acquired approximately 5000 m above ground with an integration time of 57 ms, leading to a pixel size of about 2.5 m across-track and approximately 6 m along-track, respectively. The entire day was cloud-free.

Zurich is Switzerland’s largest city with nearly 400,000 inhabitants surrounded by an agglomeration of more than one million inhabitants. The test site includes a wide range of surface types like buildings, roads, parks, forests, and part of Lake Zurich (Fig. 1, c.f. also APEX true color composite in Fig. 7a). It also includes more rural areas with decreased atmospheric pollution levels like the Uetliberg mountain range. Several major NO$_x$ sources were covered. Three national motorways surround the city to the north, west and south (A1, A3, A4) and major transit roads lead through the city with a usually high traffic volume. In addition, two waste incinerators as well as part
of the approach corridor of Zurich airport are located in the test site area. Zurich was also selected for the flight experiments because of the dense ground-based air quality network with eight stations within the range covered by APEX (Fig. 1). The National Air Pollution Monitoring Network (NABEL) provides half-hourly averaged measurements of classical air pollutants like NO$_2$, O$_3$, SO$_2$, PM$_{10}$ at Zurich Kaserne (urban background, situated in a park near the city center) and Duebendorf (suburban). Additional air quality measurements and meteorological parameters are available from the intercantonal network Ostluft which maintains eight sites in the area of interest from which six sites provided data for 26 June 2010: Heubeeribuehl (periphery), Wettswil Filderien (rural, close to motorway), Wettswil Weieracher (rural), Stampfenbach (urban, kerbside, moderate traffic), Schimmelstrasse (urban kerbside, high traffic volume), and Opfikon (kerbside, motorway).

2.3 Data preparation

APEX data were acquired in unbinned mode to provide highest spectral resolution. This instrumental setting, however, is at the expense of the signal stability. To increase the signal-to-noise (SNR) ratio, the imaging spectrometer data were spatially aggregated. A box size of 20 × 20 pixels was applied which is expected to increase the SNR twenty times (or $\sqrt{400}$) assuming uncorrelated noise. An image based SNR estimation applied on the original unbinned APEX data revealed a SNR of 158.5 at 490 nm for dark surfaces (water). Spatial aggregation, hence, increases the SNR to approximately 3170 for dark surfaces. It is relevant to note that image based SNR estimates usually overestimate noise or underestimate the SNR respectively, as surface variability is inherent in the image statistics. The spatial averaging resulted in a decreased pixel size of around 50 × 120 m2. The APEX spectrometer is spectrally and radiometrically calibrated pre-flight. However, it is worth mentioning that this calibration does not compensate for certain effects occurring in-flight. For example, pushbroom sensors are typically affected by slight spectral miss-registrations across-track, e.g spectral smile effects (D’Odorico et al., 2012).
2010) which may depend on the specific flight conditions. In order to minimize these effects, the NO\textsubscript{2} retrieval was performed on geometrically uncorrected data to allow a scan-raw wise processing of the data. In addition, NO\textsubscript{2} is determined from raw data (digital numbers or DN) and a spectral calibration is performed directly as part of the retrieval algorithm to account for spectral effects under flight conditions (c.f. Sect. 3.1).

In order to obtain surface reflectance as an important input parameter of the retrieval algorithm a software binning was applied to transform the unbinned data to the standard binning pattern and the data were subsequently calibrated to at-sensor radiance using the APEX-PAF. The re-binned radiance data were then atmospherically corrected using the ACTOR-4 software tool (Richter and Schläpfer, 2002) to obtain Hemispherical-Conical-Reflectance (HCRF) data. In a last step, the unbinned and binned APEX data were geometrically corrected using the PARGE orthorectification software (Schläpfer and Richter, 2002). This processing step is needed to re-project auxiliary data (e.g. a digital elevation model (DHM25, http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/dhm25.html, last access: 12 March 2012)) to the raw geometry of the APEX data to allow a scan-raw wise processing as mentioned before. Further, the geocorrected data is essential to relate the APEX NO\textsubscript{2} vertical column density (VCD) to the in-situ measurements of NO\textsubscript{2} concentrations and to identify objects of interest like large NO\textsubscript{x} point sources.

3 NO\textsubscript{2} retrieval

The derivation of NO\textsubscript{2} maps from APEX follows the two step approach usually applied to satellite NO\textsubscript{2} retrievals. In a first step, differential slant column densities (dSCD) are derived by the well known differential optical absorption spectroscopy (DOAS) technique (Platt and Stutz, 2008). Subsequently, the dSCD are converted to VCD by means of air mass factors (AMF) calculated with a radiative transfer model. Detailed information about the physical principles, applications, and accuracies of DOAS and AMF computations can be found elsewhere (Palmer et al., 2001; Boersma et al., 2004; Platt and Stutz, 2008).
3.1 DOAS analysis

Differential slant column densities (dSCD) were derived with the QDOAS software (http://uv-vis.aeronomie.be/software/QDOAS/, last access: 12 March 2012, Fayt et al., 2011). DOAS analysis requires reference spectra which we obtained from the imaging spectrometer data themselves. Reference spectra were selected for each individual (aggregated) flight column (along-track) to account for and minimize errors in the DOAS analysis due to spectral miss-calibration (e.g. spectral smile). For this purpose, ten (across-track) rows were chosen by visual inspection in a forested and elevated area to the south of the city (c.f. Fig. 7a) which is assumed to only contain a background abundance of NO$_2$ (pollution free). Subsequently, the ten rows were averaged in the columnar direction to increase the SNR of the reference spectra. This finally resulted in 50 across-track reference spectra per flight.

NO$_2$ absorption cross sections (at 293 K, Voigt et al., 2002) were subsequently fitted to the differential optical depth derived from the APEX measurements and the reference spectra. Spectrally slowly varying signatures (e.g. from aerosols or surface reflectance) were accounted for by including a fifth-order polynomial in the fit and instrumental effects such as dark current and/or straylight are dealt with in QDOAS by introducing an offset spectrum. Inelastic Raman scattering was considered by a Ring cross section computed by QDOAS (c.f. Fayt et al., 2011) and the interference with O$_2$-O$_2$ was accounted for by fitting an appropriate absorption cross section (Hermans et al., 2002). Smallest fitting errors were found by using the 470–510 nm wavelength region (c.f. red rectangle in Fig. 2). The usage of a window at shorter wavelengths (e.g. 420–470 nm) lead to increased fitting errors, probably due to the lower signal levels and higher noise (and therewith lower SNR).

Accurate wavelength calibration is an important prerequisite for the DOAS analysis. As indicated above, raw DN (digital number) data was used to keep the highest sensitivity of the measurements for the NO$_2$ retrieval. The spectral calibration was therefore performed with the QDOAS algorithm itself. A high resolution solar spectrum (Chance
and Kurucz, 2010) was applied to obtain spectral calibration information which was subsequently used to convolve and shift the high resolution absorption cross sections to the APEX specifications. Two exemplary (pre-processed) APEX spectra from the VNIR detector recorded over a residential and a remote vegetated area are illustrated in Fig. 2. The corresponding slant column fit of the pixel over the residential area is presented in Fig. 3 which also gives an impression of the sensor’s spectral resolution. The quality of the DOAS fit depends on the spectral and radiometric characteristics of the instrument. The spectral calibration step in QDOAS disclosed some differences worth mentioning to the pre-flight reported APEX specifications (Sect. 2.1 and Table 1) in the 470–510 nm wavelength range. The DOAS analysis indicated that the individual channels are positioned roughly 0.6 nm higher than reported pre-flight and the (over wavelength) averaged across-track differences of their corrected position (spectral smile) is \(\sim 0.25 \) nm. This is in line with recent findings from an in-flight and scene based APEX performance assessment (D’Odorico et al., 2011). Furthermore, the QDOAS wavelength calibration and slit function characterisation points to a FWHM about double the spectral resolution measured in the laboratories at the CHB. The reasons for this discrepancy are not fully understood yet and further analysis is currently carried out. Finally, note that negative dSCD can occur when the SCD from the reference spectrum is larger than that from the fitted spectrum or due to noise.

3.2 Air mass factor calculation

The AMF expresses the ratio between slant and vertical column of a trace gas:

\[
\text{SCD} = \text{VCD} \times \text{AMF}
\]

and is a measure of the average backscatter path through the atmosphere of the photons observed by the sensor. The AMF can be calculated as follows (Palmer et al., 2001; Boersma et al., 2004):

\[
\text{AMF} = \frac{\sum m_L(b)X_{a,L}}{\sum X_{a,L}}
\]
where the subscript \("L" \) denotes a specific atmospheric layer and \(m_L \) is the (box) air mass factor per layer. Besides the layer subcolumns of the a priori NO\(_2\) profile (\(x_{a,L} \)), the AMF depends on forward model parameters (\(\hat{b} \)) such as the solar and viewing zenith and azimuth angles, surface albedo, aerosol extinction profile, and surface pressure. The box air mass factors were calculated using the Linearized Discrete Ordinate Radiative Transfer model (LIDORT, Spurr, 2008):

\[
m_L = - \frac{1}{I} \frac{\partial I}{\partial \tau_L}
\]

where \(I \) is the intensity of the backscattered radiance and \(\tau_L \) the optical depth of layer \("L" \).

With regard to radiative transfer computations, the surface albedo for every pixel was derived from re-binned and atmospherically corrected APEX data themselves for the central wavelength of the fitting window (490 nm). Surface height was taken from the digital elevation model DHM25 previously projected to the raw geometry of the individual flight lines. Surface pressure for every pixel was subsequently obtained applying the US Standard Atmosphere 1976 (http://www.pdas.com/coesa.html, last access: 12 March 2012). The a priori NO\(_2\) profile was taken from the EURAD chemical transport simulations (http://www.eurad.uni-koeln.de/, last access: 12 March 2012) over Switzerland at 5 \(\times \) 5 km\(^2\). The coarse resolution profile was subsequently scaled to the corresponding surface height of the aggregated APEX grid cell according to Zhou et al. (2009). Aerosol optical depth (AOD) at 500 nm was taken from the Aerosol Robotic Network (AERONET, Holben et al., 1998) site Laegeren which is within approximately 20 km from the city of Zurich. The AOD was converted to an extinction profile for every pixel assuming an exponential decrease with height and a scale height of two kilometers. The box air mass factors from three exemplary (aggregated) APEX pixels are depicted in Fig. 4. APEX’s sensitivity toward a NO\(_2\) signal is highest in the atmospheric layer below the aircraft (red horizontal line) and is decreasing toward the surface and toward higher atmospheric layers. Among all the above mentioned parameters, the surface albedo has the largest impact on the AMF, e.g. the bright surface
(albedo of 0.27) of case (c) in Fig. 4 highly increases the APEX sensitivity toward surface NO₂. This is supported by Fig. 5 which displays the computed AMF versus surface albedo from the easterly morning flight line and which emphasizes the importance of a good quality surface albedo data set in our NO₂ VCD determination.

Since we are using earthshine spectra as reference, the result of the DOAS fit are differential slant column densities \(\text{dSCD} = \text{SCD}_P - \text{SCD}_R \) which can be written as:

\[
d\text{SCD} = (VCD_P \times AMF_P + SCD_{STR}) - (VCD_R \times AMF_R + SCD_{STR})
\]

where the subscripts “P” and “R” refer to tropospheric quantities under polluted and clean (reference) conditions, respectively. The stratospheric contribution to dSCD can reasonably be assumed to be constant for the polluted and reference spectra in our study region. Hence, the (additive) stratospheric SCD \(\text{SCD}_{STR} \) cancels out on the right hand side of Eq. (4) and AMF_P and AMF_R are calculated using only atmospheric levels up to the tropopause in Eq. (2). Rearranging Eq. (4) finally yields the VCD_P:

\[
VCD_P = \frac{d\text{SCD} + VCD_R \times AMF_R}{AMF_P}
\]

where the VCD_R has to be estimated. In our case we assume \(1 \times 10^{15} \) molec cm\(^{-2} \) which is in the range of previously reported rural/background tropospheric columns for European summer conditions from OMI data and an ensemble of regional air quality models (Huijnen et al., 2010). Note that dSCD varies primarily due to different NO₂ below the aircraft, mainly in the boundary layer where NO₂ profiles peak in contrast to the usually low concentrations in the free troposphere.

3.3 Post-processing

Missing pixels due to a failed dSCD fit were replaced with the mean NO₂ VCD value of the nearest neighbours (less than 5% of all retrievals were affected). The resulting
NO$_2$ maps were subsequently de-striped in order to correct for artefacts introduced by parameters varying (randomly) across-track, e.g. the background VCD or remaining sensor artifacts. Assuming that the average NO$_2$ per scan line varies smoothly, a fifth degree polynomial was fitted to the average of each scan-line. The residuals per scan line were finally subtracted from the initially retrieved NO$_2$ VCD field.

4 Results

The capability of APEX to sense NO$_2$ and the NO$_2$ product itself are assessed and discussed in the following subsections. The NO$_2$ SCD fitting and the two-dimensional VCD distribution are analyzed in detail. Further, the APEX NO$_2$ maps are compared with ground-based in-situ measurements and yearly averaged modelled NO$_2$ emission fields.

4.1 SCD analysis

Histograms of derived NO$_2$ dSCD and the corresponding dSCD error are depicted in Fig. 6. Selected statistical parameters obtained by the DOAS analysis can be found in Table 2. In general, the histograms resemble a Gaussian distribution. The average dSCD for the morning flight lines is 9.2×10^{15} molec cm$^{-2}$ ($\pm 8.31 \times 10^{15}$ molec cm$^{-2}$) which is about 2.5 times higher than the average dSCD of the afternoon flights (3.87×10^{15} molec cm$^{-2}$ $\pm 5.09 \times 10^{15}$ molec cm$^{-2}$). The minimum dSCD is in the same order for both overflight times (-1.58×10^{16} molec cm$^{-2}$ and -1.68×10^{16} molec cm$^{-2}$, respectively) whereas the maximum dSCD for the morning is almost twice the afternoon value (4.71×10^{16} molec cm$^{-2}$ versus 2.86×10^{16} molec cm$^{-2}$). Several random and systematic error sources affect the APEX based dSCD fitting, e.g. instrumental noise, wavelength calibration, or temperature dependency of the absorption cross sections (Boersma et al., 2004). A detailed assessment of these error sources is beyond the scope of this study. Rather, we concentrate here on the overall
dSCD error. About 14 % of all retrievals lead to negative dSCDs for the morning overflight and 22 % for the afternoon overflight (Table 2). The averaged fitting error for the morning is $2.37 \times 10^{15} \text{molec cm}^{-2}$ ($\pm 6.47 \times 10^{14} \text{molec cm}^{-2}$) and for the afternoon $2.42 \times 10^{15} \text{molec cm}^{-2}$ ($\pm 4.53 \times 10^{14} \text{molec cm}^{-2}$). This corresponds to 24 % and 47 % of the respective absolute dSCD. The absolute dSCD fitting errors and their standard deviations are very similar for the morning and afternoon results. Further differences between the results obtained for the morning and afternoon overflights are discussed in more detail in the subsections below. In general, the dSCD errors do not reveal any geographical pattern (not shown) like e.g. correlation with albedo or surface type. SCD errors in the order of $0.7 \times 10^{15} \text{molec cm}^{-2}$ are reported for different satellite NO$_2$ retrievals in the literature (Boersma et al., 2004, 2007; Valks et al., 2011; Valin et al., 2011). These lower SCD errors can be explained by the better characteristics of these sensors specifically designed for trace gas remote sensing (e.g. SSI, FWHM, SNR, fitting window at shorter wavelength with stronger NO$_2$ signal possible) as compared to APEX (c.f. Sect. 2.1 and Table 1).

4.2 NO$_2$ spatial distribution

The spatial distributions of NO$_2$ VCD over Zurich for the morning and afternoon overflights are depicted in Fig. 7b and c, respectively. In addition, a comparison between the morning APEX NO$_2$ VCD and modelled yearly averages of surface NO$_2$ concentrations for 2010 is presented in Fig. 8. The simulation is based on a high-resolution ($100 \times 100 \text{m}^2$) emission inventory combined with a Gaussian plume dispersion model (SAEFL, 2004). Overall, APEX NO$_2$ VCDs are considerably higher for the morning than for the afternoon overflights. Especially the morning mosaic of the three flight lines reveals very distinct and plausible spatial NO$_2$ patterns. Higher NO$_2$ VCD can be found in residential areas (specifically over the city), over motorways, and around the international airport of Zurich to the north of the scene. Interestingly, the enhanced NO$_2$ VCD values in the north-eastern part of the scene correspond to a large shopping area west of the motorway A4 (c.f. Fig. 1) which is known to have a large traffic volume.
during shopping hours, especially on Saturdays. Higher NO$_2$ in the south-western part of the image area corresponds to a motorway junction where three motorway tunnels intersect open air. In general, the motorways as a prominent source of NO$_2$ do not show up as clearly in the APEX NO$_2$ VCD maps as in the model surface NO$_2$ (Fig. 8). One has to consider that these data were acquired on a Saturday where traffic reveals different characteristics than during weekdays, e.g. generally less traffic volume with more private transport, less commuter traffic, and less trucks. Lower NO$_2$ mainly occurs in remote and/or forested areas, e.g. at the Uetliberg mountain range to the south west of the city or the forested area just east of the airport. Further, the three different flight lines per mosaic generally superimpose well. Some disagreements, especially found between the westerly and central flight line, can presumably be attributed to varying NO$_2$ abundances in the across-track direction in the reference areas. Overall, the spatial NO$_2$ distribution and the above-mentioned NO$_2$ features are in good agreement with the modelled surface concentration in Fig. 8 underlying the capability of APEX to detect tropospheric NO$_2$. It should be kept in mind that the APEX data represent the NO$_2$ distribution at a given time under a specific weather situation while the model distribution is an annual mean estimate. APEX data also represent vertical below-aircraft columns whereas the model data are concentrations at the surface. A closer look at some exemplary and specific areas is given in Sect. 4.3.

In general, spatial gradients of NO$_2$ VCD are more pronounced for the morning, but enhanced NO$_2$ VCD around the airport, around the motorway junction, over the city and decreased NO$_2$ VCD in remote areas and over the lake are also detectable in the afternoon maps. The above mentioned differences can be assigned to at least two reasons. First, the NO$_2$ concentration was lower in the afternoon compared to the morning. The diurnal evolution of surface NO$_2$ concentrations measured at eight NABEL and Ostluft sites is plotted in Fig. 9. The values during the APEX overflights range from low (4.1 µg m$^{-3}$) to polluted (43.55 µg m$^{-3}$) depending on the location and time of day. All sites show a strong decrease of NO$_2$ during the morning hours and more or less stable concentrations in the afternoon (after about 12:00 UTC). This is in line
with increased chemical loss of NO$_2$ during the day due to the reaction of NO$_2$ with the hydroxyl radical. In addition, the development of the boundary layer is expected to lead to decreased surface concentrations due to enhanced vertical mixing in the afternoon which in turn would not affect the vertical columns. On average, the morning NO$_2$ abundance from the in-situ sites (23.0 ± 11.7 µg m$^{-3}$) is almost double the afternoon abundance (12.0 ± 7.9 µg m$^{-3}$) and the difference between the most polluted (Opfikon and Zurich Kaserne/Zurich Stampfenbachstrasse) and cleanest (Heubeeribuehl) is about 2.5 times larger in the morning (38.0 µg m$^{-3}$) than in the afternoon (16.6 µg m$^{-3}$). The higher APEX NO$_2$ VCDs during the morning are hence highly plausible and are supported by the surface measurements. In this regard, APEX derived NO$_2$ VCDs allow tracking part of the diurnal NO$_2$ cycle.

Second, it can be assumed that the NO$_2$ is more homogeneously mixed in the atmosphere, both vertically and horizontally, once the boundary layer is fully developed in the afternoon (∼400 m during the morning and ∼1600 m during the afternoon overflight according to the COSMO numerical weather forecast (Baldauf et al., 2011)). Wind speed and direction measured at two different sites maintained by the Swiss Federal Office of Meteorology and Climatology (Fig. 10) show that the meteorological situation changed distinctively shortly after the morning APEX flights, i.e. wind speed sharply increased by nearly four times until noon and the wind direction switched from northwest to northeast typical of a Bise situation. The stronger winds lead to a stronger dilution and more rapid transport of NO$_2$ to regions downwind of its main emission sources. This behaviour partly explains the larger NO$_2$ variability and therewith better detectability of NO$_2$ sources for the APEX sensor during the morning overflights. These meteorological conditions together with the diurnal cycle of NO$_2$ are also of particular interest with regard to the planning of future flight campaigns.

Finally, Different parameters related to the sensor characteristic and retrieval algorithm may also partly account for the reported differences. The selected reference spectra should ideally be determined from a pollution-free area with a high albedo and therefore high SNR. However, such ideal reference spectra could not be found in the
current test area. The used reference spectra over a forested area characterized by a relatively low albedo might cause a decreased dSCD fitting quality (c.f. Sect. 4.1). Further, the contrast in NO\textsubscript{2} between the area where the reference spectra were chosen and the other areas are rather small for the afternoon case for reasons discussed above. This reduced contrast lead to distinctively more negative dSCD derived for the afternoon (c.f. Sect. 4.1).

Forward model parameters vary during the course of the day and therewith also the AMF. The average AMF increased from 1.51 in the morning to 1.71 in the afternoon. The major part of this change can be assigned to an increase in the aerosol optical depth from 0.19 to 0.26 (at 500 nm) based on Sun photometer measurements from the nearby AERONET site Laegeren. The solar zenith angles were quite similar for the morning (at 08:00 UTC \(\sim 48.2^\circ\)) and afternoon (around 15:30 UTC \(\sim 52.9^\circ\)) but these differences nevertheless slightly affect to AMF. Uncertainties in AMF are known to be a major source of uncertainty in NO\textsubscript{2} VCD retrievals. For example, several studies (Boersma et al., 2004, 2007; Zhou et al., 2010) estimated AMF uncertainties in the range of 30\% for OMI and SCIAMACHY. A somewhat lower AMF uncertainty can be expected in the presented retrieval because we do not have to deal with cloud contamination which is an important part of the AMF uncertainty (Boersma et al., 2004; Popp et al., 2011). However, a detailed sensitivity analysis of our AMF computations is beyond the scope of this study.

4.3 Examples of source identification

A more detailed view of specific NO\textsubscript{2} features detected by APEX is illustrated on the basis of three examples in Fig. 11 where the yearly averaged modelled surface concentrations are plotted for comparison. The first example (Fig. 11a and b) focuses on an area around the south-eastern part of Zurich’s international airport. The enhanced surface NO\textsubscript{2} concentrations around the end of the two runways are well captured by the APEX VCD map. These two features are most likely caused by emissions from aircraft landing and taking off. Additionally, the APEX RGB image (Fig. 11c) acquired in the
morning shows different aeroplanes in motion around the hangar and one at the engine test stand (encircled red) close to the area of maximum NO$_2$ VCD in this example. In contrast, APEX VCD does not mirror the enhanced surface NO$_2$ concentrations above the motorway A51 which might be explained by the different traffic characteristics on a Saturday morning. The second example (Fig. 11d and e) displays the area around the waste incinerator Hagenholz situated between the city and the airport (c.f. map in Fig. 1). The plume of the waste incinerator pointing in the southwest direction does clearly emerge in the RGB subsence (Fig. 11f). The increased NO$_2$ around the chimney is well detectable in the APEX VCD maps while the immission model representing surface concentrations does not reflect the emissions from this elevated source. The third example shows an area around the lower part of Lake Zurich, including the national motorway A3 and the harbor/dockyard at the shore of Lake Zurich. In general, the spatial gradients of the yearly average surface NO$_2$ distribution are reproduced well by APEX VCD. Also the NO$_2$ abundance from traffic emissions along the motorway A3 are detectable in this example. In contrast to the first example, this specific leg of the motorway A3 is located in a N-S oriented valley, which likely channeled emitted NO$_2$. The smeared-out patterns of NO$_2$ over and around the lake basin is a result of locally transported NO$_2$. The NO$_2$ hot spot in the southern part of example three is situated over the harbor/dockyard area of Zurich. The APEX RGB image (Fig. 11i) shows a vessel on the ramp of the dockyard during the morning overflight. However, if specific engine tests were performed or not is unknown.

4.4 Comparison to ground-based measurements

The APEX derived NO$_2$ VCD are subsequently compared to the ground-based in-situ measurements. It is relevant to note that APEX NO$_2$ VCD cannot be directly validated with the in-situ NO$_2$ concentrations since APEX NO$_2$ VCD is a columnar product (in molec cm$^{-2}$) while the in-situ measurements represent a trace gas concentration (in µg m$^{-3}$). Nevertheless, we apply this direct comparison for a qualitative evaluation.
The evaluation result is illustrated in Fig. 12 where the APEX retrieved NO$_2$ VCD is plotted as a function of the in-situ measurements at eight NABEL and Ostluft sites. In general, a good agreement between the APEX derived NO$_2$ VCD and in-situ concentrations can be found and the correlation coefficient is relatively high ($R = 0.73$). Boersma et al. (2009) compared OMI and SCIAMACHY TVDC with surface measurements in Israeli cities and found correlations in the order of $R = 0.64$. This clearly underlines the capability of the APEX instrument to sense spatial NO$_2$ gradients. The mean absolute deviation is 2.07×10^{15} molec cm$^{-2}$ or 29% of the mean NO$_2$ VCD of these match-ups. The correlation coefficient for the morning and afternoon results separately are almost identical ($R = 0.61$).

5 Conclusions

We presented the first highly detailed two-dimensional NO$_2$ fields derived from the airborne APEX imaging spectrometer taking advantage of its unique combination of high spectral and spatial resolution and high number of pixels. Radiance data were acquired twice over Zurich, Switzerland, in the morning (10:00 LT) and afternoon (17:30 LT) of a cloud-free summer day in June 2010. The main results and conclusions from this study can be summarized as follows.

1. Although not primarily designed to retrieve atmospheric constituents, APEX is clearly sensitive toward NO$_2$ above typical European background concentrations. The DOAS analysis revealed a mean dSCD of 9.2×10^{15} molec cm$^{-2}$ and 3.9×10^{15} molec cm$^{-2}$ for the morning and afternoon overflights with a mean fitting error of around 2.4×10^{15} molec cm$^{-2}$ for both.

2. The results revealed very plausible spatial distributions of NO$_2$ VCD over the greater Zurich area, e.g. high abundances downwind of the runways of Zurich’s airport, in the city, over a shopping area, or around a waste incinerator. Lowest
NO$_2$ was found in remote places like the forested hills around the greater Zurich area. APEX is thus clearly suitable to detect individual NO$_2$ pollution sources.

3. The NO$_2$ maps from the morning and afternoon overflights showed significant differences. Spatial gradients were much more pronounced in the morning which could mostly be assigned to the meteorological parameters (lower BLH and lower wind speed) and chemical loss of NO$_2$ due to reaction with the hydroxyl radical. Using APEX observations, it is also possible to roughly capture the diurnal cycle of atmospheric NO$_2$ as the morning overflights exhibited higher NO$_2$ than the afternoon overflights.

4. APEX NO$_2$ VCD were in very good agreement ($R = 0.73$) with ground-based in-situ air quality measurements from the Swiss National Air Pollution Monitoring Network (NABEL) and the inter-cantonal network Ostluft. This further underlies the good performance of APEX and the capacity to capture atmospheric NO$_2$ from its data.

The overall quality of the APEX retrieved NO$_2$ VCD to also depends on external parameters which should already be accounted for during flight planning. Preferably, APEX data should be acquired in an operation mode, which allows optimizing SNR (e.g. increased integration times). Further, pollution-free regions should be present in the imaged area in order to select appropriate reference spectra. These spectra should, if possible, be acquired over bright surfaces. Finally, the spectral calibration and slit function characterisation with QDOAS pointed to a doubling of the spectral resolution in-flight compared to pre-flight laboratory characterisation. Possible causes for this discrepancy are currently under investigation and such findings might help to optimize future instrument set-ups.

The findings of this study clearly reveal a high spatio-temporal variability of NO$_2$. Airborne-based NO$_2$ retrieval, such as presented in this study, allows detecting NO$_2$ emission sources, provides valuable input for NO$_2$ emission modeling, or helps to strengthen the link between air quality models and satellite NO$_2$ products. This all
together enables to increase the knowledge on processes and characteristics of NO$_2$
tropospheric distribution. Additional and complementary APEX flights have been car-
ried out in the meantime and others are currently in planning. The growing data base of
observations will be used to enhance the APEX NO$_2$ retrievals but also to gain know-
edge on spatio-temporal NO$_2$ distribution.

Acknowledgements. The authors acknowledge Hyper-Swiss-Net which is jointly funded by the
Swiss University Conference and the ETH Board as an Innovation/Cooperation project (Refer-
ence number C-19). We like to thank NABEL and Ostluft for providing in-situ measurements.
The QDOAS team at BIRA is supported by the Belgian Science Policy, in particular through the
AGACC-II and PRODEX A3C projects. We thank the APEX team for providing and coordinating
the APEX flight activities and Andreas H"uni for fruitful discussions.

References

Baldauf, M., Seifert, A., F"orstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Oper-
atioanl Convective-Scale Numerical Weather Prediction with the COSMO Model: Description

Beirle, S., Platt, U., von Glasow, R., Wenig, M., and Wagner, T.: Estimate of nitrogen ox-
ide emissions from shipping by satellite remote sensing, Geophys. Res. Lett., 31, L18102,

Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity Emis-
sions and Lifetimes of Nitrogen Oxides Probed from Space, Science, 333, 1737–1739,
doi:10.1126/science.1207824, 2011. 2451

Bell, J. N. B. and Treshow, M.: Air Pollution and Plant Life, John Wiley & Sons Ltd., Chichester,
UK, 2002. 2451

Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO$_2$ retrieval
2457, 2460, 2461, 2464

van den Oord, G. H. J., Levelt, P. F., Stamnes, P., Gleason, J. F., and Bucsela, E. J.:
Heue, K.-P., Wagner, T., Broccardo, S. P., Walter, D., Piketh, S. J., Ross, K. E., Beirle, S., ...

SAEFL: Modelling of NO\(_2\) and benzene ambient concentrations in Switzerland 2000 to 2020, Environmental Documentation No 188 Air, Berne: Swiss Agency for the Environment, Forests, and Landscape, 64 pp., 2004. 2461

Table 1. Selected characteristics of the APEX imaging spectrometer

<table>
<thead>
<tr>
<th></th>
<th>VNIR</th>
<th>SWIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Range</td>
<td>380.5–971.7 nm</td>
<td>941.2–2501.5 nm</td>
</tr>
<tr>
<td>Spectral Bands</td>
<td>up to 334</td>
<td>198</td>
</tr>
<tr>
<td>Spectral Sampling Interval</td>
<td>0.55–8 nm</td>
<td>5–10 nm</td>
</tr>
<tr>
<td>Spectral Resolution (FWHM)</td>
<td>0.6–6.3 nm</td>
<td>6.2–11 nm</td>
</tr>
<tr>
<td>Spatial Pixels (across track)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Field of view</td>
<td>28°</td>
<td></td>
</tr>
<tr>
<td>Instantaneous field of view</td>
<td>0.028° (~ 0.5 mrad)</td>
<td></td>
</tr>
<tr>
<td>Spatial sampling interval (across track)</td>
<td>2.5 m at 5000 m AGL</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Statistics for the NO$_2$ VCD retrievals from the morning and afternoon overflight (OF = overflight, Av. = average, Stddev = standard deviation). The units are molecules cm$^{-2}$ where not otherwise indicated.

<table>
<thead>
<tr>
<th></th>
<th>Av. dSCD</th>
<th>Stddev dSCD</th>
<th>Min dSCD</th>
<th>Max dSCD</th>
<th>Av. dSCD error</th>
<th>Stddev dSCD error</th>
<th>% negative dSCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning OF</td>
<td>9.20 x 1015</td>
<td>8.31 x 1015</td>
<td>-1.58 x 1016</td>
<td>4.71 x 1016</td>
<td>2.37 x 1015 (24 %)</td>
<td>6.47 x 1014</td>
<td>14</td>
</tr>
<tr>
<td>Afternoon OF</td>
<td>3.87 x 1015</td>
<td>5.09 x 1015</td>
<td>-1.68 x 1016</td>
<td>2.86 x 1016</td>
<td>2.42 x 1015 (47 %)</td>
<td>4.53 x 1014</td>
<td>22</td>
</tr>
</tbody>
</table>
Fig. 1. Map of Zurich and surrounding areas (data source: Bundesamt für Landestopographie (Swisstopo)). The three morning flight lines are overlayed in black (the afternoon flight lines are almost identical and therefore omitted for clarity). The three white boxes correspond to the position of the examples shown in detail in Fig. 11. An APEX true color composite corresponding to this flight lines is provided in Fig. 7a.
Fig. 2. Exemplary APEX spectra from the VIS/NIR detector acquired 26 June 2010 over Zurich, Switzerland. These particular spectra were recorded over a residential area in the eastern part of the city (black line) and over a remote vegetated area (blue line). The red rectangular overlay indicates the NO$_2$ fitting window where a zoom-in of the two spectra is also provided.
Fig. 3. Exemplary NO\textsubscript{2} fit for an APEX spectrum recorded over Zurich (for the pixel shown in black in Fig. 2). The RMS of the residuals of this fit is 2.61×10^{-4}.
Fig. 4. Three exemplary box air mass factor curves from the APEX NO$_2$ VCD retrieval. Curve (a) represents a pixel with surface albedo (at 490 nm) of 0.05, (b) of 0.12, and (c) of 0.27 leading to AMFs of 1.46 (a), 1.98 (b), and 2.52 (c), respectively. Note that also additional parameters such as surface pressure or observation geometry vary thereby introducing small differences between the three box air mass factor profiles. The horizontal red line depicts the flight altitude.
Fig. 5. Plot of the air mass factors versus their corresponding surface albedo from the easterly flight line in the morning.
Fig. 6. Histograms of dSCD (upper panel) and dSCD errors (lower panel) for the morning (left panel) and afternoon (right panel) APEX flights. Note the much shorter scale of the x-axis in the lower panel.
Fig. 7. RGB composite of the morning overflights (a) as well as retrieved NO$_2$ VCD from the morning (b) and afternoon overflights (c). The morning data was recorded on 26 June 2010 around 10:00 local time (or 08:00 UTC) and the afternoon data the same day around 17:30 (or 15:30 UTC). The small arrows denote the heading of the aircraft for each flight line. The areas of each flight line where the reference spectra have been determined are denoted by the transparent yellow boxes in (a). Also note the different color scale applied to (b) and (c).
Fig. 8. Retrieved NO$_2$ VCD from the morning overflights over Zurich (a). (b) illustrates the modelled yearly averages of surface NO$_2$ concentrations (modelled for the year 2010 and available at: http://www.gis.zh.ch/gb4/bluevari/gb.asp?app=GB-LHNO210, last access: 12 March 2012). The thin orange lines in (b) depict district/community boundaries.
Fig. 9. Diurnal evolution of NO$_2$ surface concentrations at eight monitoring sites in the study region. The two vertical red lines denote the time of the APEX overflights.
Fig. 10. Diurnal curve of wind speed (solid lines) and wind direction (crosses) at the two sites Zurich SMA (black) and Zurich Airport (blue) from measurements provided by the Swiss Federal Office of Meteorology and Climatology. The two vertical red lines denote the time of the APEX overflights.
Fig. 11. Exemplary details from APEX NO$_2$ VCD derived from the morning overflights over Zurich (left panel) and the corresponding modelled yearly averages of surface NO$_2$ immissions (middle panel) for comparison (modelled for the year 2010 and available at http://www.gis.zh.ch/gb4/bluevari/gb.asp?app=GB-LHNO210, last access: 12 March 2012). The thin orange lines depict district/community boundaries. Details of the true color composite from the APEX overflight are illustrated in the right panel, i.e. aircrafts in the hangar area of Zurich airport ((c), aircraft at the engine test site encircled red), plume from the waste incinerator (encircled red, (f)), and vessel on the ramp of the dockyard (i). The outline of the three subscences are marked in the left and middle panel as the black rectangles.
Fig. 12. Scatter plot between surface in-situ NO$_2$ concentrations and APEX derived VCD for the morning (black diamonds) and afternoon overflights (blue triangles). The (combined) correlation is 0.73 and the regression line $y = 2.60 \times 10^{15} + 2.59 \times 10^{14} \times x$.