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ABSTRACT 
 

The reduction of structure-borne sound is a persistent problem in acoustics. Since the 
1980’s, there has been a great deal of research, and plentiful significant gains have been achieved in 
active structural acoustic control (ASAC) systems, in which only structural actuator/sensors are 
employed to control the sound radiated by a structure. One of the primary concerns in ASAC sys-
tems is to choose the appropriate sensor. Polyvinylidene fluoride (PVDF) strain sensors have at-
tracted more and more attention in recent years in ASAC systems. PVDF sensors are distributively 
bonded onto the host structure and have the inherent advantage of integrating over their surface 
area, which leads to potentially more robust implementations when compared to implementations 
that use accelerometers. The PVDF sensor bonded onto the host structure can be directly integrated 
into the smart structure for real-time structural-acoustical control. It is well-known that an ASAC 
system primarily targets low frequency applications, the development of appropriate PVDF sensors 
used in ASAC should be based on the low frequency mechanisms of the sound radiation from vi-
brating structures. Since PVDF sensors measure structural vibration information, the designed sen-
sors should take the relationship between the structural response and acoustic response into consid-
eration. Because the sound power is a function of the surface velocity distribution, the different dis-
tribution of surface velocity makes different contribution to sound power. For example, for a simply 
supported plate, the radiation efficiency of odd-odd order structure modes is higher than that of the 
other order modes. As a result, the reasonable sensor should be designed to mainly detect these 
well-radiating velocity distributions. It has been widely accepted that the PVDF sensors can be de-
veloped based on measurement of the volume displacement/velocity. At low frequencies, the vol-
ume displacement/velocity accounts for the majority of the radiated sound power. The cancellation 
of the volume displacement strategy for an ASAC system has been shown to be very efficient at re-
ducing sound radiation in the low frequency range. In general, the design of PVDF film is based on 
an orthogonality relationship with the mode shape function of the structure, so that it can be shaped 
in such a way that its charge output proportional to the volume displacement. This means the mode 
shape of the structure should be known accurately in advance. For given boundary conditions there 
are unique PVDF sensor shapes. Any deviation from mode shape may result in large measurement 
error. To alleviate this problem, this paper presents a new methodology for designing volume dis-
placement sensors using shaped PVDF film on the basis of integral by parts approach. The design 
method proposed here does not require knowledge of the structural mode shapes of the structures. 
As shown the PVDF sensor shape is independent of property of the excitation (the type, position 
and frequency, etc.). Furthermore, the PVDF sensor proposed here is not sensitive to changes in the 
boundary conditions. For example, for a beam with one clamped end (the other end is arbitrary), its 
volume displacement can be measured using a fixed shape of PVDF sensor. 
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1. INTRODUCTION 
 

Polyvinylidene fluoride (PVDF) strain sensors have attracted more and more attention in re-
cent years for use with the active structural acoustic control (ASAC) techniques [1], in which only 
structural actuator/sensors are employed to control the sound radiated by a structure. PVDF films 
are distributed sensors and thus avoid spatial aliasing problems, they give little loading on light 
structures, and are easy to cut into desired shapes. The width of a sensor strip can be varied along its 
length to achieve the required spatial sensitivity. In this way the output signal only requires a suit-
able amplifier alleviating the need for further signal processing. The PVDF sensor bonded onto the 
host structure can be directly integrated into smart structure for real-time structural-acoustical con-
trol. Since PVDF sensors measure structural vibration information, the sensors should be designed 
to take the relationship between the structural response and acoustic response into consideration. 
The reasonable designed sensor should be able to mainly detect the well-radiating vibration distri-
butions. It has been widely accepted that the PVDF sensors can be developed based on the volume 
displacement/velocity [2 – 9]. At low frequencies, the volume displacement/velocity accounts for 
the majority of the radiated sound power. The cancellation of the volume displacement strategy for 
an ASAC system has been shown to be very efficient for reducing sound radiation in the low fre-
quency range. Ref. [2, 3] gave an exhaustive literature survey on the design of volume velocity sen-
sors for beam- and plate- type structures. 

The theory used for designing volume displacement sensors with shaped PVDF films has 
been well developed. However, the shaped PVDF sensor implementation is often difficult because 
the sensor design is almost exclusively performed using an orthogonality relationship with the 
structural mode shape function. This means the vibration mode shape of the beam should be known 
accurately in advance. For given boundary conditions there are unique PVDF sensor shapes.  

To alleviate these problems, this paper presents a new methodology for designing shaped 
PVDF sensors to detect the volume displacement from a vibrating beam. As opposed to the work of 
previous authors (using orthogonality relationships with the structural mode shape function, referred 
as the modal approach), the PVDF shape design method proposed here is based on integral by parts 
approach. The method proposed here does not require knowledge of the structural mode shapes of 
the beam. Through design of the shape of the PVDF film, the charge output of PVDF sensor is pro-
portional to the volume displacement of the beam. Finally, numerical simulations are conducted to 
verify the proposed volume displacement PVDF sensors.  
 
 
  
2. DESIGN VOLUME DISPLACEMENT SENSOR USING INTEGRAL BY PARTS AP-
PROACH  
 

Consider a beam of length L, width b and thickness h, a piezoelectric film of uniform thick-
ness is attached to the upper surface over the entire length of the beam, as shown in Figure 1. The 
volume displacement D is defined as the integral of the displacement w(x) over the surface of the 
beam, and can be represented as [6] 
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Figure 1. Beam with a shaped PVDF film. 

 
As referred to Lee and Moon’s work [10], the output charge Q of the shaped PVDF sensor 

can be expressed as follows, 
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where hf is the PVDF sensor thickness, F(x) is the shape function of the PVDF sensor, e31 is the 
PVDF sensor stress/charge coefficient. 

Integrating Eq. (2) by parts twice, we get  
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To design shaped PVDF sensors that can accurately measure the volume displacement of the 

beam, the output charge Q in Eq.(3) should be proportional to the volume displacement D. We can 
assume the PVDF shape function as 
 
                   ( ) CBxAxxF ++= 2                                                                                                       (4) 
 
where A, B and C are unknown coefficients. 

From Eq. (4), we can get ( ) Ax
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From Eq. (5), it is easy to find that if the PVDF sensor shape function is satisfied, 
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Clearly, if the PVDF shape function F(x) is satisfied in Eq.( 4) and Eq. (6), the output charge 

Q must be proportional to the volume displacement of the beam. For simplicity, we set Q = D to 
get, 
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The next step is to calculate the PVDF shape function coefficients B and C from Eq. (4) and 

(6). Because Eq.(6) depends on boundary conditions of the beam, the PVDF shape function should 
be determined for different boundary conditions. It is found that the boundary conditions of the 
beam can be divided into two groups, for each group of boundary conditions, the volume displace-
ment of the beam can be measured using a fixed shape of PVDF sensor. These two groups of 
boundary conditions are discussed in the following section. 

 
 
  

2-1. Beam with one end clamped and the other end having arbitrary boundary conditions 
 

First, we assume that the boundary condition of the beam is clamped at the left end and arbi-
trary at right end, this boundary condition can be represented as 
 

                       ( ) ( ) 000 =
∂

∂
=

x
ww                                                                                                       (9) 

 
 Substituting Eq. (9) into Eq. (6), yields  
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Clearly, Eq.( 10) can be identically satisfied, only if 
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Using Eq.(11), The coefficient B and C in Eq.(4) can be obtained 

 
                       ALB 2−=  and 2ALC =                                                                                         (12) 
 

Substituting Eq. (12) into Eq. (4), the PVDF shape function can be obtained  
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Similarly, for the beam with the clamp at the right end (arbitrary boundary condition at left 

end), we get ( ) ( ) 0=
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2-2. Beam with zero displacement at the each end 
 

The boundary conditions for zero displacement at the each end can be represented as 
      
                      ( ) ( ) 00 == Lww                                                                                                      (15) 
 

Substituting Eq. (15) into Eq. (6), yields ( ) ( ) ( ) ( ) 000 =
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Substituting Eq. (16) into Eq. (4), the PVDF shape function can be obtained 
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If the first derivative of the charge output signal is taken, i.e. the current I(t) is measured, 

then the sensor output is proportional to the volume velocity of the beam V, since ( ) ( )
dt

tdQtI =  and 
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3. NUMERICAL CALCULATIONS  
 

In order to verify the above PVDF volume displacement sensor design method, a beam with 
dimensions of 500 × 25 × 3.5 mm is considered (over the frequency range of 5Hz to 800Hz). The 
Young’s modulus, density and damping ratio are 2 × 1011 Pa, 8700 kg/m3 and 0.01, respectively. 
The PVDF sensor shapes required for measurement of the volume displacement are shown in Fig-
ure 2 and 3 for two groups of boundary conditions, respectively.  
 

                    
Figure 2. The PVDF shape for beam with one end clamped and another end arbitrary boundary conditions. 

 

Clamped end End with arbitrary boundary 



   

    
Figure 3. The PVDF shape for beam with zero displacement at the each end boundary condition. 

 
To further investigate, Table 1 lists the PVDF shape function F(x) for some typical boundary 

conditions. From Table 1, it is clearly demonstrated that for clamped-clamped beam, there are many 
possible sensor shapes to measure the volume displacement, because the PVDF shape function co-
efficients B and C are arbitrary. The PVDF shapes shown in Figure 2 and 3 can be used to measure 
the volume displacement of the clamped-clamped beam. Furthermore, it can be found that the 
PVDF shape for a clamped-free beam (as shown in Figure 2) can be used to measure the volume 
displacement with the boundary conditions of clamped-clamped, clamped-simply supported or 
clamped-free. 

 
Table 1. PVDF shape function f(x) = Ax2 + Bx + C for some typical boundary conditions 

 Clamped Simply supported Free 

Clamped B, C arbitrary 
BLALC −−= 2  

B arbitrary 
( ) ( )2LxAxF −=  

Simply supported C = 0, B arbitrary ( ) ( )LxxAxF −= 2   

Free ( ) 2AxxF =    

 
For comparison, the shapes of the PVDF volume displacement sensors designed by the mo-

dal approach (see Appendix) are shown in Figure 4. From Figure 4, it can be found that the modal 
approach yields unique sensor shapes for given boundary conditions. If the boundary condition is 
changed, the shaped of the PVDF sensor should be modified simultaneously. The main drawback of 
the modal approach is that the structural mode shape of the beam should be accurately known in 
advance. Any deviation of the mode shape of the beam may result in large measurement error. 

According to above analysis, it can be found that use of the integral by parts approach seems 
to be more practical than the modal approach. For example, three unique shapes of PVDF sensors 
(as shown in figure 4.b – d) designed by modal approach are required to measure the volume dis-
placement for the beam with clamped-clamped, clamped-simply supported and clamped-free 
boundary conditions. However, only one uniform sensor shape (shown in Figure 2) designed by in-
tegral by parts can be used to measure the beam with all three of these boundary conditions. 

 
 



   

 
 

 
 
 

Figure 4. The shape of the PVDF volume displacement sensors designed by modal approach. 
 
Assume that the beam is excited by a point force located at xd = 0.11m. Figure 5 – 7 show 

the signal outputs of the volume displacement PVDF sensor with the shapes shown in Figure 2 (de-
signed by the integral by parts approach) measuring the beam with clamped-clamped, clamped-
simply supported and clamped-free boundary conditions. It can be shown that the charge output 
curves agree well with analytical volume displacements for different boundary conditions, as ex-
pected. It should be noted that only one uniform shape of PVDF sensor is used to measure the vol-
ume displacements with these three boundary conditions. 

 

 
Figure 5. The signal output of PVDF sensor (with shape in Figure 2) for a Clamped-clamped beam.  
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Figure 6. The signal output of PVDF sensor (with shape in Figure 2) for a Clamped-simply supported beam.  

 

 
Figure 7. The signal output of PVDF sensor (with shape in Figure 2) for a Clamped-free beam.  

 
 
 
4. CONCLUSIONS 
 

This paper presents a technique for measuring the volume displacement from a vibrating 
beam using shaped PVDF films on the basis of the integral by parts approach. The main advantage 
of the method is that the shape function of the PVDF sensor is not sensitive to changes of the 
boundary conditions. The boundary conditions of vibrating beam can be divided into two groups, 
that is, (1) one end is clamped and another end is arbitrary; (2) the displacement at each end is zero. 
As to each group of boundary conditions, the volume displacement of beam can be measured using 
just a simple fixed shape of PVDF sensor. For example, for a beam with one clamped end, its vol-
ume displacement can be measured by using a PVDF sensor with the shape shown in Figure 2, no 



   

matter what type of boundary condition is in place at another end. The other advantage is that the 
PVDF shape designed here is independent of property of the excitation (the type, position and fre-
quency, etc.). The numerical results show the feasibility of this new type of shaped PVDF sensor 
for the measurement of the volume displacement.  
 
 
 
REFERENCES 
 
1. R. L. Clark and C. R. Fuller. A Model Reference Approach for Implementing Active Structural 

Acoustic Control. Journal of the Acoustical Society of America, 1992, 92(3): 1534 – 1544. 
2. M. E. Johnson and S. J. Elliott. Active Control of Sound Radiation Using Volume Velocity 

Cancellation. Journal of the Acoustical Society of America, 1995, 98(4): 2174 – 2186. 
3. P. Gardonio, Y. S. Lee and S. J. Elliott. Analysis and measurement of a matched volume veloc-

ity sensor and uniform force actuator for active structural acoustic control. Journal of the 
Acoustical Society of America, 2001, 110(6): 3025 – 3031. 

4. H. Henrioulle, P. Sas. Experimental validation of a collocated PVDF volume velocity sen-
sor/actuator pair. Journal of Sound and Vibration, 2003, 265: 489 – 506. 

5. Q. Mao, et al. A piezoelectric array for sensing radiation modes. Applied Acoustics, 2003, 64: 
669 – 680. 

6. Q. Mao and S. Pietrzko, Measurement of local volume displacement using a piezoelectric array. 
ACTA Acustica, 2006, 92: 556 – 566. 

7. X. Pan, T. J. Sutton and S. J. Elliott. Active Control of Sound Transmission Through a Double-
leaf Partition by Volume Velocity Cancellation. Journal of the Acoustical Society of America, 
1998 104(5): 2828 – 2835. 

8. M. B. Zahui, K. Naghshineh and J. W. Kamman. Narrow Band Active Control of Sound Radi-
ated from a baffled Beam Using Local Volume Displacement Minimization. Applied Acoustics, 
2001, 62: 47 – 64. 

9. F. Charette, A. Berry C and Guigou. Active Control of Sound Radiation from a Plate Using a 
Polyvinylidence Fluoride Volume Displacement Sensor. Journal of the Acoustical Society of 
America, 1998, 103(3): 1493 – 1503. 

10. C. K. Lee and F. C. Moon. Modal Sensors/Actuator. ASME Journal of Applied Mechanics, 
1990, 57: 434 – 441. 

 
 
 
APPENDIX. DESIGN SHAPED PVDF VOLUME DISPLACEMENT SENSOR USING MO-
DAL APPROACH 
 

The displacement distribution of a vibrating beam can be represented by a series expansion. 
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where Am and φm(x) are the mth modal coordinates and structural mode shape function. M is the in-
dex for the highest order structural mode considered.  

Substituting Eq.(A.1) into Eq.(2), we get 
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To design shaped PVDF sensor that can accurately measure the volume displacement, the 

output charge Q in Eq.(A.2) should be proportional to the volume displacement D in Eq.(1). As re-
ferred to Lee and Moon’s idea [10], the PVDF shape function F(x) in Eq.(A.2) is assumed to be a 
linear combination of the second derivative of the mode shapes of the vibrating beam, yields 
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where Bk is the unknown coefficient. 

Substituting Eq.(A.3) into Eq.(A.2), we get 
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According to the orthogonality property of the structural mode shapes,  
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Using Eq.(A.5), Eq.(4) can be rewritten as   
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Substituting Eq.(A.1) into Eq.(1), the volume displacement can be rewritten as 
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Compare Eq.(A.7) to Eq.(A.6), assume that Q = D, we get the PVDF shape coefficients 
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From Eq.(A.8), it is easy to find shape coefficients Bk. Substituting Bk into Eq.(A.3), the 

shape function F(x) for the PVDF sensor can be obtained for measurement of the volume displace-
ment. 
 




