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Abstract

A reduced order model for the transverse displacement dynamics of a bi-
stable composite shell is derived to be used in morphing structures applica-
tions. Love’s equations of motion for general shells are used with the Von-
Karman strain-displacement relations to obtain the governing dynamic equa-
tions. A Galerkin approach is employed to obtain a set of modal nonlinear
equations describing the solution for the transverse displacement. Frequency
and time response diagrams are experimentally obtained and employed to
reduce the order of the derived model. The reduced set of nonlinear modal
equations are numerically solved to obtained the simulated frequency and
time response for the shell. Experimental results are compared to those
numerically simulated showing very good agreement. The capability to cap-
ture the dynamics of the bi-stable shell with a simple model facilitates its
integration with smart actuators rendering feasible the design of morphing
structures.

Keywords: Multi-stable composites, nonlinear vibration, morphing structures, subhar-
monic resonance.

1 INTRODUCTION

Composite laminates are becoming increasingly important in a wide variety of appli-
cations, particularly in aerospace engineering. A novel type of composite laminates
exhibiting multiple stable configurations, or states, have been the focus of recent re-
search within the adaptive structures community [1]. The property of multi-stability
appears as a result of asymmetric residual thermal stresses induced during the curing
process [2]. The change between stable configurations is achieved by a strongly nonlin-
ear mechanism known as snap-through. Recent research has focus on the applicability
of multi-stable composite laminates to aerospace morphing structures as the tailoring of
predetermined stable-shapes has become feasible [3]. By coupling the tailoring of multi-
stable composites with smart actuators and control systems morphing structures can
be obtained. The operating conditions for morphing applications will inevitably result
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in exposure of the multi-stable composites to high levels of dynamic excitation, for ex-
ample in an aeroelastic environment. Potentially these large amplitude vibrations could
lead to unexpected failure of the multi-stable structures or trigger undesired change of
shapes (snap-through) [4], therefore vibration suppression mechanisms are required for
a robust operation. Successful implementation of such control strategies rely on accu-
rate models describing the dynamics of the structures. However, most of the studies
of composite laminates for morphing have focused on models to predict the change of
shape of the laminates under static loading [5]. Furthermore, very little work has been
carried out to examine the dynamics of multi-stable composite plates. A first attempt
to characterize the snap-through was presented in [6] and a study of the dynamic re-
sponse around stable states was introduced in [7]. However, to the best knowledge of
the authors no theoretical models for the dynamics of multi-stable composite laminates
intended vibration suppression control has not been attempted on.

This paper presents the development of a dynamic model using Love-Von-Karman
theory for shallow shells vibration to obtain the nonlinear governing equations for the
transverse displacement of a bi-stable composite shell. A Galerkin solution methodol-
ogy is employed to decouple the solution of the transverse displacement of the bi-stable
shell into time and spatial solutions. A set of nonlinear ordinary differential equations
is obtained for the time solution of the transverse displacement. The spatial solution
is modelled using beam functions as mode shapes. The model is validated with an
experimental characterization based on experimental frequency response diagrams that
capture the main dynamic features of the bi-stable plate, such as primary resonance
and damping coefficients. This allow us to choose the minimum number of degrees-
of-freedom required to obtain a good approximative solution. Secondary subharmonic
resonance observed in nonlinear vibration of flat composite plates [8] were also included
in the experimental characterization. Previous studies have reported that they can lead
to catastrophic failure of structures even if the excitation is away from the natural fre-
quencies of the system as reported in [9]. Simulations for both the frequency and time
response are conducted showing excellent qualitative and quantitative match. Further-
more, beam functions approximate qualitatively well the experimentally obtained mode
shapes. Finally conclusions are drawn and an outline of future work is presented, in-
cluding the coupling of the derived dynamic model with smart actuators, such as MFCs,
to obtain a truly morphing structure.

2 PROBLEM FORMULATION

The two stable states of the bi-stable shell are shown in figure 1.(a),(b). The shell is
mounted to a ling shaker which is used as the source of external excitation. The four
edges of the shell can oscillate freely.

2.1 Equations of motion

The equations of motion for the vibrations for a bi-stable composite shell around one
of its stable states are obtain from Love-Von-Karman theory for large deflections of
shells [10]. We neglected in-plane inertias in our derivation as their effect is of higher
order. Using the constitutive laws for a laminated orthotropic material [11] and intro-
ducing Airy’s stress function φ(x, y, t), the equation for the transverse displacement is
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(a) Stable state 1 (b) Stable state 2

Figure 1: Stable configurations of the Bi-stable plate.
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where Ri is the radius of curvature of the i coordinate, Pij are given by (P11, P12, P22) =
(A22,A12,A11)
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and P33 = 1
A66

, Aij and Dij are the membrane and bending stiffness relating

direction i with j, C is the matrix of viscous damping coefficients, h is the thickness
and ρ the density of the plate. Airy’s stress function is defined as [12]
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where Nij are the membrane forces. The nonlinear equations 1 and 2 govern the trans-
verse displacement of the bi-stable composite about its stable states.

We assume a separable solution for the transverse displacement in equation 1 given
by w(x, y, t) = X(x)Y (y)W (t). Further, the spatial functions X(x) and Y (y) or mode
shapes are assumed to have the form of beam functions [13]

X(x) = Fx1 sin(Ex1x) + Fx2 cos(Ex2x) + Fx3 sinh(Ex3x) + Fx4 cosh(Ex4x) (4)

Y (y) = Fy1 sin(Ey1y) + Fy2 cos(Ey2y) + Fy3 sinh(Ey4y) + Fy4 cosh(Ey4y). (5)

In our study we consider a bi-stable shell with free-edge boundary conditions, namely

Nx(0, y) = Nx(Lx, y) = Ny(x, 0) = Ny(x, Ly) = 0 (6)

Nxy(0, y) = Nxy(Lx, y) = Nxy(x, 0) = Nxy(x, Ly) = 0

Mx(0, y) = Mx(Lx, y) = My(x, 0) = My(x, Ly) = 0

Qx(0, y) = Qx(Lx, y) = Qy(x, 0) = Qy(x, Ly) = 0,

where Lx=Ly are the dimensions of the bi-stable shell. The expression for the mode
shapes are obtained substituting the selected beam functions 4 in the stated boundary
conditions.
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2.2 Galerkin method solution

A Galerkin solution approach is followed in order to obtain a solution for the transverse
displacement from equations 1 and 2 [14]. As the equations are coupled we first need
to find a solution for the stress function φ to obtain the tranverse displacement w. To
this end, we notice that in equation 2, w and φ are decoupled. Therefore we can treat
it as a linear partial differential equation of φ forced by an arbitrary function of w.

P11
∂4φ

∂y4
+ P22

∂4φ

∂x4
+ (P33 − 2P12)

∂4φ

∂x2∂y2
= h(X(x), Y (y), W (t)). (7)

Recalling that equation 7 is linear in φ, a particular solution will be of the same form as
the forcing function h, this is φ(x, y, t) = h∗(w), where individual terms in h∗ and h are
related by proportional constants. The particular solution h∗(w) for φ enable us to solve
the transverse displacement equation. Following the Galerkin procedure we rewriting
the solution for w as w(x, y, t) =

∑
∞

n=1 Xn(x)Yn(y)Wn(t) and substitute it with function
h∗(w) into equation 1 to obtain a set of modal equations given by
∞∑

n=1

Xn(x)Yn(y)[ρhẄn+2ζnẆn]+
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(8)
where ηni are coefficients function of X(x), Y (y) and h∗(w). The solutions of the modal
equations gives the time response of the transverse displacement w, which will be solved
numerically in section 4.1.

3 DYNAMIC RESPONSE AND MODEL REDCUTION

In order to reduced the order of the governing equation 8 we conducted a process of
characterization of the dynamic response of the bi-stable shell. This process and its
results are presented in the following sections.

3.1 Experimental assembly and measurement procedure

A carbon-fibre epoxy [04 − 904]T 300x300 mm square bi-stable laminate was used as
the experimental specimen the experimental assembly used for this study can be seen
in figure 2.(a). The shell was characterized by measuring the experimental frequency
response for 2 points on the coordinate directions of a local frame with the axes (x, y)
coinciding with the curved and flat directions of the bi-stable plate as seen in figure
2.(b). The out-of-plane z axis is chosen for the transverse direction.
The frequency response diagrams for the system were obtained by a process of strobo-
scopic sampling of the time series for the measured displacement data. By exciting the
system with a sinusoidal input to induce vibration, peak-to-peak displacement measure-
ments were sampled from the time responses for several consecutive forcing periods, as
shown in figure 3. The sampled amplitude value over one forcing period represents a
single point in a frequency response diagram. For a given forcing frequency the sam-
pled amplitude for a linear system over consecutive forcing periods remains unchanged,
as seen in figure 3.(a). On the other hand, a nonlinear response can exhibit multiple
measured amplitudes values over consecutive forcing periods as seen in figure 3.(b).
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(a) (b)

Figure 2: (a) Experimental Assembly. Ling shaker V405, vibrometer OFV-552. b) Measured points
in the laminate. Point Px describes the transverse vibration in curved-direction, coinciding with the
x-coordinate. Point Py describes the transverse vibration in the flat-direction.
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Figure 3: Stroboscopic sampling procedure to obtain peak-to-peak values for a given forcing period.
For a a) linear response and b) nonlinear response.

3.2 Time and frequency response

The experimental frequency response diagram for the curved direction, i.e. for point
Px, of the shell for a forcing amplitude of 1 N is shown in figure 4.(a). Two modes of
vibration dominate the response, mode x1 at 17.6 Hz and mode x2 at 29.6 Hz. Damping
coefficients ζx1

and ζx2
, are chosen based on the peaks for the response for each mode. A

linear response is seen in most of the studied range except for the region around 35 Hz.
This range corresponds with twice the natural frequency for mode x1. In more detail
the nonlinear displacement response for point Px for a forcing frequency of 34.2 Hz is
shown in figure 4.(b). A non sinusoidal response to the simple harmonic excitation of
the shell is observed. The power spectrum of this response, figure 4.(c), shows that the
energy transmitted by the external forcing at 34.2 Hz is almost completely transferred
to a lower frequency at around 17.6 Hz, coinciding with the measured natural frequency
of mode x1. The above mentioned experimental observations suggest that a 1/2 sub-
harmonic response of mode x1 is present in the response [15]. Figure 4.(d) shows the
experimental frequency response diagram describing the flat direction of the shell. A
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Figure 4: Experimental results, forcing amplitude of Fo = 1.0 N , frequency range Ω=[11, 45] Hz. (a)
frequency response for point Px. b) displacement time response and c) power spectrum for a harmonic
input at Ω = 34.2 Hz. (d) frequency response for point Py. (e) displacement time response and (f)
power spectrum for a harmonic input at Ω = 39.2 Hz.

single mode dominates the response, that is mode x3 at 19.6 Hz. Similarly to mode x1,
ζx3

is chosen based on the peak for the response of mode x3. A small response around 30
Hz can be seen suggesting weak coupling between the response of x3 and x2. In a similar
way as for the curved direction of the shell, nonlinear oscillations were observed on the
range of twice the frequency of mode x3. Figures 4.(e) and 4.(f) show a displacement
time series and power spectrum for a forcing frequency opf 39.2 Hz. The displacement
response displays a sinusoidal behaviour. However the power spectrum graphs shows
once more that most of the energy from the forcing input is transferred from the forcing
frequency to a lower frequency at around 19 Hz, matching the frequency of mode x3.
Yet again, the observed experimental characteristics correspond to a 1/2 subharmonic
behaviour of mode x3.

A 1/2 subharmonic resonance was observed for both the flat and curved direction.
Well established theoretical results state that quadratic type nonlinearities generate 1/2
subharmonic oscillations [16]. Other super or subharmonic oscillations were sought but
not found for different levels of forcing. As a result, we choose to keep only this type
of nonlinearity in the modal equations. The reduced set of equations of motion for the
bi-stable shell are discussed in the next section.

3.3 Modal equations

The experimental results for the dynamic response of the shell show that it is dominated
by 3 modes, enabling us to reduced the number of modal equations in the solution for
w. Furthermore, for the current configuration only the quadratic nonlinear terms are
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important in the response simplifying the system of modal equations 8 to

ẍ1 + 2ζx1
ωx1

ẋ1 + ω2
x1

x1 + α1x
2
1 + α2x1x2 = fx1

Fo sin Ωt, (9)

ẍ2 + 2ζx2
ωx2

ẋ2 + ω2
x2

x2 = fx2
Fo sin Ωt, (10)

ẍ3 + 2ζx3
ωx3

ẋ3 + ω2
x3

y1 + β1x3
2 + β2x3x2 = fx3

Fo sin Ωt, (11)

where xi is the transverse displacement for mode xi, Fo is the driving force amplitude, Ω
is the forcing frequency, fxi

(x, y) are the modal participation factor for mode xi, α1,α2,β1

and β2 are constant coefficient.

4 SIMULATION RESULTS AND COMPARISON

4.1 Simulated frequency and time response

The coefficients proposed for the derived equations of motion were fitted using the
frequency response diagrams obtained experimentally. The set of ordinary coupled non-

10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

Frequency [Hz]

A
m

p
li
tu

d
e

[m
m

]

(a)

10 10.05 10.1 10.15 10.2 10.25 10.3

−4

−2

0

2

4

6

Time[s]

D
is
p
la

ce
m

en
t

[m
m

]

(b)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8
x 10

4

Frequency [Hz]

(c)

10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

Frequency [Hz]

A
m

p
li
tu

d
e

[m
m

]

(d)

0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 10

4 Displacement Power Spectrum F=1.0 N,Ff=39.2 Hz

Frequency [Hz]

(e)

10 10.05 10.1 10.15 10.2 10.25 10.3
−6

−4

−2

0

2

4

6

Time[s]

D
is
p
la

ce
m

en
t

[m
m

]

(f)

Figure 5: Numerically simulated dynamic response for the curved direction. Fo = 1.0 N , frequency
range Ω=[11, 45] Hz (a) frequency response diagram for the curved direction. (b) displacement time
response. (c) displacement power spectrum. Forcing frequency = 34.2 Hz. (d) frequency response
diagram for the flat direction. (e) displacement time response flat direction. (f) displacement power
spectrum flat direction. Forcing frequency = 39.2 Hz.

linear differential equations derived for the identified modes, equations 9, 10 and 11,
were solved simultaneously using a Runge-Kutta type solver. Figure 5 show the simu-
lated results obtained for the frequency and time response for the shell. When compared
with the experimental results shown in figure 4 very good qualitative and quantitative
agreement can be observed in both the frequency response diagrams and displacement
and power spectrum graphs. The frequency response diagrams for both the curved and
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(a) (b) (c) (d)

Figure 6: Experimental and simulated mode shape for mode x3. (a) Three-dimensional view and (b)
lateral view of the experimental transverse displacement. (c) Three-dimensional view and (d) lateral
view of the simulated transverse displacement.

flat directions, figures 5.(a) and 5.(d), show all the relevant measured characteristics,
including the observed subharmonic oscillations. Similarly, the time response and power
spectrum graphs show excellent agreement with the experimental results. In particu-
lar, the waveform and energy transfer for the subharmonic oscillations are captured,
demonstrating the validity of the model.

4.2 Experimental and simulated mode shapes

The mode shapes of the bi-stable shell were obtained by exciting the shell at the previ-
ously identified natural frequencies and measured using a scanning laser. The simulated
mode shapes are obtained by only keeping the non-zero coefficients in beam functions
4, this gives for mode x3

X(x) = 0.1 ∗ cosh(
πx

Lx

), Y (y) = sinh(
πy

Ly

) + 0.9 ∗ cosh(
πy

Ly

), (12)

where Lx=Lx=300 mm. To illustrate the results figure 6 shows both the experimental
and simulated mode shapes for mode x3. Comparing the image of the experimental
displacement field showed in figures 6.(a) and 6.(b) to the simulated mode shape shown
in 6.(c) and 6.(d) it can be seen that a good qualitative agreement was achieve. Thus,
the mode shapes for a bi-stable shell can be modelled using beam functions with a good
level of accuracy.

5 CONCLUSIONS

The main objective of this paper was to derive a reduced order model to capture the
dynamics of a bi-stable composite shell for adaptive structures applications. Love’s-
Von-Karman theory for shallow shell deflection was used to obtain the equations of
motion for the bi-stable shell. A Galerkin approach and an experimental characterization
process were employed to reduced the order of the model. A separable solution for the
transverse displacement was obtained by numerically solving a set of modal nonlinear
equations multiplied by the associated mode shapes functions. A comparison between
the experimental and the simulated frequency response diagrams showed that the model
reproduces accurately the observed dynamics of the plate. The natural frequencies for
the modes in the range of interest were capture. Moreover, the potentially dangerous
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subharmonic oscillations were modelled with the nonlinearities included in the equations
of motion. Additionally, experimental mode shapes were modelled using mode shapes
showing good qualitative agreement.

The simplicity of the derived reduced order model facilitates its integration to rela-
tively low order adaptive controllers and smart actuators to obtain morphing structures.
Furthermore, the use of the measured mode shapes with the frequency response diagrams
allows for a better selection for the position of smart actuators for vibration cancellation
and actuation control of the bi-stable shell. New developments will seek to integrate the
derived model with the effect of the smart actuators to achieve the mentioned control
objectives.
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