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ABSTRACT 

 
 Synthetic Jet Actuators (SJAs) are one of the most promising fluidic actuators for flow 

control. Traditionally they are used for boundary layer control, however, in the recent past, the 
authors have shown that they can also be used suitably for aeroelastic purposes. This is due to the fact 
that SJAs displace the streamlines around a lifting body, changing the aerodynamic forces and 
moments. In order the SJAs to be used for active real-time control, the flow field generated by these 
actuators needs to be described in an analytical way for fast analysis. Such an analytical model is 
developed based on Theodorsen’s theory. The unsteady aerodynamic model stems also from 
Theodorsen’s theory, and the structure is a two degree-of-freedom model – pitch and plunge. The 
structural model is nonlinear in the sense that a cubic nonlinearity is added to the torsion spring. The 
whole system is transformed into state space form, and the jet is used as a control input. Sliding mode 
control is used as a control strategy to suppress the limit cycle oscillations. 
 
Keywords: Synthetic Jet Actuators, Nonlinear Aeroelasticity, Limit Cycle Oscillation, Sliding Mode 
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1. INTRODUCTION 
 

Synthetic Jet Actuators (SJAs) are fluidic devices that can blow and suck air. They are 
conceptually simple and consist of a cavity containing a vibrating membrane that pushes flow in and 
out the cavity through an orifice. For aeronautical applications, piezoelectric actuation can be 
conveniently used. The output jet velocity can be maximized by driving the membrane at a resonant 
frequency of either the membrane itself or the cavity, or even the interaction between the two. A usual 
application of SJAs is to energize the boundary layer on a lifting surface and hence postpone flow 
separation. Another effect is a change of the streamline pattern around the airfoil, which is called the 
method of “virtual shaping”. This causes a global change in aerodynamic forces and moments on the 
lifting surface. The flow field resulting by the use of SJAs is inherently complex, and either accurate 
CFD models or experimental results are needed. In spite of this, a reduced-order model to describe 
the change in lift and moment due to the SJAs, based on Theodorsen’s formulation, has been 
proposed by the authors in the recent past [1]. Such an approach found its usefulness in a real-time 
control framework, where knowledge of the additional aerodynamic terms due to the SJA must be 
available instantaneously. 

 

 



Previous work in the field of control of linear aeroelastic systems has shown the effectiveness 
of SJAs: both gust load alleviation and flutter postponement have been achieved, either separately 
[2,3], or simultaneously [4,5]. A transfer function based, lead-lag control has been analyzed initially 
[2,3,4]; then, a more refined state space LQR control methodology has been investigated [5]. 

The behavior of a nonlinear aeroelastic system is clearly different. For a flow velocity above 
the linear flutter speed, sustained oscillations in the form of Limit Cycle Oscillations (LCO) can 
occur instead of unbridled growth of the airfoil’s pitching or plunging amplitude. The nonlinearities 
causing the LCO can be induced by structural or aerodynamic effects. However, in case of the typical 
two-dimensional airfoil aeroelastic analysis, often structural nonlinearities are used. This is also the 
case in the present paper. 

Another novelty, described in this paper, in the research of aeroelastic control using synthetic 
jets is the application of a sliding mode controller. This controller is robust, for it is able to adapt to 
changing system dynamics and flow speed. Sliding mode control has been applied to two- and 
three-dimensional aeroelastic systems successfully in the past [6,7]. The SJA model itself accounts 
for a jet distribution of a designated part of the airfoil, and the jet can be located at various locations 
on the airfoil. The distribution width and jet location are investigated parametrically. 

The paper is organized as follows. First the aeroelastic model, accounting for the SJA, is 
explained. Next the control strategy using the sliding mode controller is given, followed by the results 
of the design case studies. Finally, pertinent conclusions are drawn. 
 
 
 
2. AEROELASTIC MODELING 

 
A two-dimensional lifting surface, with plunge and pitch degrees-of-freedom, is considered. 

The rotational stiffness of the aeroelastic system k is nonlinear and depends on the pitch angle . 
Such a system exhibits Limit Cycle Oscillations (LCOs) and it is chosen in order to evaluate the 
effectiveness of the control capabilities provided by the SJAs in a nonlinear aeroelastic setting. A 
sketch of the system, without the SJAs, is shown in Figure 1. The nonlinear aeroelastic governing 
equations, considering also the forces due to the SJAs, can be written in the time domain as: 
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where m, I, S , ch, c, kh and k are standard structural mass, damping and stiffness parameters, L 
and M are the aerodynamic lift and moment due to the degrees-of-freedom motions, while Lvj and Mvj 
are the control contributions due to the SJAs. 
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Figure 1: Sketch of a) the plunge and pitch aeroelastic system, and b) the distributed jet on the airfoil. 



If the fluid is assumed to be incompressible and irrotational, and if the airfoil is considered 
thin, the unsteady aerodynamic forces due to the plunge h and pitch  displacements can be described 
in the Laplace domain using Theodorsen’s formulation [8]. In particular, the lift L is given by: 

 
2 2 2 3 2 1ˆˆ ˆ ˆ ˆ2

2
sbL b v s b s h b as vbC v sh b a s
v

ˆ ˆ                              
 (2) 

 
where  is the air density, a is the dimensionless location of the elastic axis, b is the semi-chord, s is 
the Laplace variable, v is the free stream flow velocity and C is Theordorsen’s function. The hat 
notation is introduced to distinguish between functions in the time or Laplace domain. When it comes 
to modern control strategy development, it is usually convenient to use a time domain representation 
and a corresponding state-space formulation. Using the Jones rational approximation the Theodorsen 
function is conveniently expressed as [9]: 
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To conveniently describe the circulatory component of the unsteady aerodynamic forces, the 
following aerodynamic lag states can be introduced: 
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The above equations can be straightforwardly transformed back in the time domain.  

Similarly, the unsteady aerodynamic moment is given by:  
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Also in this case, the circulatory contributions of the aerodynamic moment can be expressed in the 
time domain using the same aerodynamic lag states a1 to a6 defined in Eq. (4). 

  The additional contributions to the lift Lvj, and moment, Mvj, due to distributed SJAs have 
been derived elsewhere [1, 5]:  
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where vj is the jet velocity. These additional lift and moment can be expressed in the time domain by 
using the same rational fraction approximation for the Theodorsen function. It is convenient to define 
two additional lag states, as follows: 
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  With the above equations, it is now possible to develop a state-space model for the nonlinear 

aeroelastic system controlled by the distributed SJAs. The evolution of the system is described by a 
set of first order differential equations, as follows: 
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 The state vector x has 13 components, as follows: 
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T
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 The input vector u in this case is a scalar, and it is taken as the time derivative of the jet velocity vj: 
 

jvu   (11) 
  
 The matrix A(x) is not constant, but depends on the states x, since a nonlinear torsion spring is 

introduced. Both the matrix A(x) and the vector B are reported for completeness in the Appendix. 
 
 
 
3. SLIDING MODE CONTROLLER 
 
 Sliding mode controllers are part of the family of variable structure control systems. The basic 
idea behind the controller strategy is rather simple and quite powerful. A short description with 
regards to the regulation problem is provided here, with the resulting control law equations used in 
the analysis. More information, with historical background, rigorous mathematical details and 
examples, can be found in [10]. 
 Consider a dynamic system with two states, x1 and x2. The trajectories can then be visualized 
on a plane. With reference to Figure 2 consider a line through the origin in the state space. For this 
two-dimensional system, such a line is the desired sliding surface Ls. The sliding mode controller is 
designed so that: 

 starting from an arbitrary configuration, the system evolves towards and reaches the sliding 
surface in a finite time ts; 

 for all successive times, t > ts, the controller keeps the states on the sliding surface, hence 
ideal sliding motion takes places, asymptotically tending to the origin. 

In this aeroelastic application, the states vector x has thirteen components. The straight line of Fig. 2 
becomes a hyper-plane in a higher-dimensional space, but it can still be described by a vector S. 
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Figure 2: Example of action of sliding mode controller on a system with 2 states. 

 
Such a control strategy presents various advantages, among which robustness towards parameters 
uncertainties: if the underlying system changes its properties, the controller tries (within certain limits) 
to guide the states towards the sliding surface Ls and to keep them there, since the feedback action 
depends on the distance from the sliding surface and not on the parameters of the system.  
 Next, the steps followed to design the controller are reported. The first one is to identify an 
underlying linear system. In this case, since the only nonlinearity is given by the nonlinear torsional 
spring k, a natural choice is to consider the linear system obtained by linearizing k around 
Hence, the matrix A(x) of Eq. (9) can be divided in a constant linear part, and in a nonlinear 
one, as follows: 
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  The next step is to bring the underlying linear system to regular form. This is accomplished by 

a change of coordinate system, from states x to z, through a rotation matrix Tr, such that 
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 The dynamic of such a linear system is hence described by:  
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 Having recast the equations in these terms, the input u acts directly only on a subset of the states. 
  The switching function s that identifies the sliding surface is also transferred in the new 

coordinates as follows: 
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After the ideal sliding motion takes place (t > ts), the system obeys to a reduced order dynamics. In 
fact, since the states are confined to stay on Ls, it is readily found that: 
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Hence, the states z2 follow (statically) the states z1, whose evolution is dictated by: 
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 The sliding surface, described by S, ultimately shapes the dynamics of the sliding motion, through M. 
  The next step is therefore the design of the sliding surface itself. Several approaches are 

possible, among which quadratic minimization of a cost function, eigenvalue placement and 
eigenstructure assignment methods [10]. In this work, the quadratic minimization approach is chosen. 
The problem becomes that of choosing M (and S) such that the functional 
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 is minimized. The solution can be found using standard LQR techniques. Physically, this approach 

accounts for stabilizing the system after the sliding motion takes place (t > ts) as fast as possible, 
assigning proper weights to the different states through the matrix Q. The choice of the Q is somehow 
arbitrary: in this work the same weights are assigned to the three states h,  and vj, while a zero 
weight is assigned to the remaining ones. 

  This approach assumes that all the states of the system are available for feedback. In this 
application, however, this is not the case, as in particular the lagged aerodynamic states are not easily 
accessible. Hence, the sliding surface S is modified by setting to zero various components, as follows:  
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 In the above, a star in a certain position indicates that the optimal value assigned to S through LQR 

minimization is kept unchanged. With such a modification, the feedback law is de facto acting only 
on h,  and vj, that can be considered to be known outputs of the system. The plunge and pitch 
velocities and the various lagged aerodynamic states do not appear in the feedback loop. 

  The last step is to obtain the control law. The control signal u is given by [10]: 
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where  in this case is a scalar dictating how fast the sliding surface is reached in the initial phase of 
the control (t < ts). Since in this application u has the physical meaning of time derivative of vj, the 
signal to be sent to the actuator can be readily obtained by integration. 

 
Table 1 Aeroelastic system properties 

 

mass m 12.387 [kg/m] plunge stiffness kh 2844.4 [N/m/m] 

inertia Iα 0.065 [kg·m2/m] pitch damping c 0.036 [N·m/(1/s)/m] 

static moment S 0.1097 [kg·m/m] plunge damping ch 27.43 [N/(m/s)/m] 

semi-chord b 0.135 [m] air density  1.225 [kg/m3] 

shear center a –0.8424 [/] free stream velocity v 15 [m/s] 

pitch stiffness k 2.820 – 62.322  + 3709.71   – 24195.6   + 48757.0  [N·m/m] 

 
4. RESULTS 



 
For the numerical computations, a set of parameters similar to the ones of [11] is used. Table 1 

summarizes the system properties. A disturbance is introduced in the system as a non-zero initial 
condition, with an initial plunge and pitch displacements equal to h0 = –0.001 m and 0 = 0.09 rad, 
respectively. The simulation is performed in the time domain, using the variable order 
Adams-Bashforth-Moulton integrator as implemented in the MATLAB® function ODE113 [12]. 

All the simulations are performed at a free stream velocity v equal to 15 m/s. At this speed, the 
open-loop nonlinear system exhibits an LCO, as shown in Figure 3.  
 

 
Figure 3: Plunge and pitch response of the open loop system, showing the evolution towards an LCO. 

 
The sliding mode controller is able to successfully suppress the LCO, as evident from the next 

figures. The feedback control law proposed here uses only the information from the plunge 
displacement h, the pitch rotation  and jet velocity vj. Hence, the trajectories of these states evolve 
towards a sliding surface and then tend to the origin. A typical response is shown in a three 
dimensional plot (h, , vj) in Figure 4. To show the effectiveness of the control, first an initial time is 
given to the system to evolve in open-loop towards an LCO. No control input is used during this 
phase, that is, the jet velocity is zero, and the states h and  stay on a horizontal plane. When the 
control is turned on, the system tends to the inclined surface, that in this case represents the sliding 
surface. Once this is reached, the system dynamics is constrained to remain on that plane, and the 
states wind up towards the origin. Stabilization is therefore attained. 

 

 
 
Figure 4: Three-dimensional plot of the plunge, pitch response and jet velocity vj for the closed-loop configuration 

with xm = 0.60, jet width 10% of the chord. The plane vj = 0 and the sliding plane are shown. 
Figure 5 reports a parametric analysis obtained fixing the distributed jet width to 10% of the 



chord, and varying its position from leading edge to trailing edge. Since the same steps are used in 
designing the sliding mode controller, such an analysis leads to the conclusion that – for these 
particular set of system parameters – a location towards the trailing edge is more convenient. In fact, 
positioning the jet almost at the leading edge damps the oscillations rather slowly. Moving the SJA 
towards the trailing edge, the pitch rotation is damped out rather effectively. The plunge 
displacements are not shown in the figure, since they follow closely the pitch rotations. Out of the 
different configurations analyzed in Figure 5, the jet at xm = 0.60 is the one that gives the best 
stabilization with the smallest jet velocity expenditure. 
 

 

 
Figure 5: Pitch response and jet velocity vj for different closed loop configurations.                                                

The distributed jet width is 10% of the chord, its position is varied:                                                             
a) xm = 0.15 (almost L.E.), b) xm = 0.30, c) xm = 0.60, d) xm = 0.85 (almost T.E.). 

 
 The effect of the distributed jet width is now analyzed in Figure 6, where the distributed 
synthetic jet position is held constant at xm = 0.60. The pitch response in depicted in the plots. The 
results in terms of stabilization effectiveness are undistinguishable between the 5% and 15% width 
cases. The difference is only in terms of required jet velocity vj, that scales in an inverse proportion to 



the jet width, as expected. 
  

 
Figure 6: Pitch response and jet velocity vj for different closed-loop configuration. The position of the jet is held 

constant at xm = 0.60, its width is varied: a) jet width 15% of the chord, b) jet width 5% of the chord. 
 
 Finally, the robustness of the closed-loop system is assessed. In this case, a jet location 
xm = 0.60 and jet width equal to 10% of the chord are considered. The control law is computed at the 
nominal pitch stiffness k  given in Table 1. Then, the aeroelastic system is modified, by means of a 
reduction in the pitching stiffness k by 25%. A limit cycle oscillation with larger amplitude is 
expected. The controller, however, is still able to stabilize the system, with performances comparable 
to the nominal case, as shown in Figure 7. This robustness is also observed with respect to changes in 
other system parameters, in particular when the free stream velocity v is varied. 
 

 
Figure 7: Pitch response and jet velocity vj for a closed loop configuration with a reduced pitch stiffness.                      

The position of the jet is xm = 0.60, its width is 10% of the chord. 
 
 
 
5. CONCLUSIONS 

 
A nonlinear aeroelastic model accounting for the aerodynamic effect of Synthetic Jet 

Actuators has been developed. This model is used to carry out aeroelastic control studies on a typical 
aeroelastic section using the jet as a controller. The control strategy used is a sliding mode controller. 
It is shown that a SJA can indeed reduce the LCO amplitude, or even cancel it out completely. A jet 
situated towards the trailing edge of the airfoil proves to be more effective than the ones located more 



towards the leading edge. This is in correspondence with what the authors have found in recent 
research efforts for linear aeroelastic systems. If the SJA distribution is made wider, and the same 
control performance is required, it is shown that the jet blowing velocity is reduced compared to the 
smaller jets. In the future, experimental work will be carried out to validate the results of the active 
aeroelastic control results using Synthetic Jet Actuators. 
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The matrices and vectors appearing in the state-space formulation of Eq. (9) are presented. It 
inked to the control forces contributions, 
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For the integral I1, no analytical solution could be found and 
Then, the following intermediate variables can be defined: 
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the usual trapezoidal quadrature is used. 
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Finally, the matrix A and the vector B appearing in Eq. (9) can be found as: 

 
-1A = M A  (A.8) 

  
-1B = M B   (A.9) 

  
 

 




