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ABSTRACT 

 
The present paper presents a coupled high-order layerwise piezoelectric laminate theory 

capable of predicting both global and local electrostatic response of thick composite and sandwich 
composite plate structures. The through-thickness displacement field and electric potential in each 
discrete layer of the laminate includes quadratic and cubic polynomial approximations, in addition to 
the linear distributions assumed by linear layerwise theories. Stiffness, piezoelectric and permittivity 
matrices are formulated from ply to structural level. Interlaminar shear stress compatibility 
conditions are imposed on the discrete layer matrices, leading to prediction of interlaminar shear 
stresses at the piezoelectric-composite interfaces. A C1 continuous finite element was implemented 
and modified to encompass the developed theory. Application cases include thick composite and 
sandwich composite plates with surface bonded piezoelectric layers acting in active and/or sensory 
configuration.  
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1. INTRODUCTION   

 
Smart sandwich plates with composite faces and foam core and embedded piezoelectric 

actuators and sensors combine the superior mechanical properties of sandwich structures, such as 
high flexural stiffness to mass ratio, impact resistance and enhanced damping performance, with the 
additional capabilities to sense deformation and stress states and to adapt their response accordingly. 
The high thickness and inhomogeneity in properties through the thickness in both thick composite 
and sandwich composite structures lead to increased interlaminar shear stresses, which exhibit 
complex parabolic through-thickness profiles. The high shear stresses affect the global 
electromechanical response, but most importantly have a severe effect on the local stress field at the 
interface between composite and piezoelectric layers. In order to adequately capture these effects, 
formulation of layerwise laminate models is essential, which may yield robust predictions of the 
global response, but also accurate local predictions of the interlaminar and interfacial shear stresses 
and the deformed state of the laminate through the thickness.  

The electromechanical response of smart composite structures has been extensively studied in 
the last two decades. Relevant reviews have been published by Saravanos and Heyliger [1], Chopra 
[2] for displacement-based theories and Carrera and Boscolo [3] for mixed ones. Induced strain 
models published in the early 90´s encompassed either single-layer [4] or linear layerwise [5] 
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kinematic assumptions. A coupled single-layer finite element solution for composite shells with 
piezoelectric layers was developed by Lammering [6], whereas Saravanos [7] developed a 
mixed-field shell theory by assuming linear layerwise kinematics for the electric potential. Fully 
linear layerwise piezoelectric beam and plate finite elements were developed by Heyliger etal [8] and 
Heyliger and Saravanos [9], whereas Heyliger and Brooks [10] and Heyliger [11] reported exact 
solutions for piezoelectric composite beams and plates, respectively. Geometrically non-linear finite 
element solutions based on mixed-field [12] or linear layerwise [13] kinematic assumptions were also 
published in the last few years. In the area of adaptive sandwich composite structures various 
Ritz-type [14] and exact [15] solutions, as well as, finite element formulations [16, 17, 18] assuming 
piecewise linear variations of the displacement and electric potential through-thickness have been 
published. However, linear layerwise models fail to predict interlaminar shear stress and strain at the 
interface between adjacent discrete layers, moreover they require a large amount of independent 
kinematic variables to accurately describe the through-thickness electromechanical response in thick 
or strongly inhomogeneous structures. To overcome these limitations some authors superimposed 
high-order displacement fields, globally smeared through the thickness of the laminate, on the linear 
approximation adopted for the displacements in each discrete layer [19, 20, 21, 22]. A few 
displacement-based layerwise theories have been published, which assume high-order distribution of 
the displacement field through the thickness of each discrete layer of the laminate. The authors 
developed a coupled high-order layerwise beam finite element for smart sandwich composite beams 
with piezoelectric actuators and sensors [23]. Zhen and Wanji [24] developed a displacement-based 
layerwise theory with a high-order approximation for the in plane displacements and a linear one for 
the electric potential in each discrete layer, and implemented a C1-continuous triangular finite 
element to predict the electrostatic response of smart composite plates. Chopra and Robbins [25] 
published an uncoupled layerwise theory with possible quadratic through-thickness interpolation of 
the displacements and presented piecewise constant distributions of interlaminar shear stresses in 
actuated plates. Mixed high-order layerwise theories and corresponding exact solutions have been 
reported by D’Ottavio and Kröplin [26] and D’Ottavio, Wallmersperger and Kröplin [27] for 
laminated plates with piezoelectric components polarized through-thickness and shear actuators, 
respectively. However, although some very fine formulations are available in the literature there is a 
need for thorough investigation of local effects occurring in cases of practical interest, such as at the 
interface between adhesive and piezoelectric layer, where delaminations are probable to occur. 

The objective of the current paper is to present a novel high-order theoretical framework and a 
corresponding finite element for predicting the coupled global and local electrostatic response of 
thick composite and sandwich composite plates with piezoelectric actuators and sensors. The 
previously published displacement-based high-order layerwise beam theory [23] is extended in plate 
structures with piezoelectric layers polarized through their thickness. The integrated methodology 
starts at the piezoelectric ply level, where constitutive equations are formulated. In the laminate level 
the effect of lamination and thickness is taken into account by formulation of the stiffness, 
piezoelectric and permittivity laminate matrices, and by imposition of interlaminar shear stress 
compatibility. The coupled electromechanical structural response of thick composite and sandwich 
composite plates is predicted by implementing a C1-continuous finite element [28] and compared 
with exact [11] and Ritz-type [1] solutions. 
 

 
 

2. THEORETICAL FORMULATION   
 

The next paragraphs describe the integrated theoretical framework, starting from the 
governing material equations at the piezoelectric ply and arriving to the formulation and solution of 
the coupled electromechanical structural system. 

 
 



2-1. Governing Material Equations 
 

Each ply is assumed to exhibit linear piezoelectric behaviour. The constitutive equations have 
the form: 
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where i,j=1,…,6 and k,m=1,…,3; σi and Sj are the mechanical stresses and engineering strains in 
vectorial notation; Ek is the electric field vector; Dm is the electric displacement vector; Cij is the 
elastic stiffness tensor; elk is the piezoelectric tensor; and εmk is the electric permittivity tensor of the 
material. Superscripts E and S indicate constant electric field and strain conditions, respectively. The 
above equations may encompass the behavior of both an off-axis homogenized fibrous piezoelectric 
ply and a passive composite ply ([e]=0). The electric field vector is the gradient of the electric 
potential φ: 

 
k k / xE           k=1,…,3 (2) 

 
The current paper focuses on the prediction of the electrostatic response of multifunctional 

composite plate laminations containing piezoelectric materials polarized through their thickness, 
thus, only subscripts k,m=3 are taken into account. 

 
 

2-2. Equations of Equilibrium 
 

The variational statement of the equations of equilibrium for the piezoelectric plate is, 
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where A is the x-y surface of the beam; HL is the electric enthalpy of the piezoelectric laminate;   
and D  are, respectively, the surface tractions and electric displacement, acting on the boundary 
surface Γ; u is the generalized displacement vector. 
 
 
2-3. Kinematic Assumptions 

 
A typical laminate is assumed to be subdivided into n discrete layers consisting of 

piezoelectric or composite material, as shown schematically in Fig. 1a. Each discrete layer may 
contain either a physical ply, a sublaminate, or a subply. A piecewise linear field is firstly assumed 
through the laminate thickness for both in-plane displacements and transverse electric potential [8], 
which maintains displacement continuity across the discrete layer boundaries, while allowing for 
different slopes in each discrete layer. Parabolic and cubic variations are superimposed on both fields 
through the thickness of each discrete layer (Fig. 1b). Transverse compressibility is not considered at 
this stage. In this context, the displacement and electric potential field in the k-th discrete layer take 
the form: 
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where superscripts k=1,…,n and o denote discrete layer and midplane, respectively, and ζk is the 
local thickness coordinate of layer k, defined such as ζk=0 at the middle of the discrete layer, ζk=1 
and ζk=-1 at the top and the bottom, respectively, of the discrete layer k. Thus, the first two terms on 
the right hand side of the approximations of the in-plane displacements and electric potential describe 
the linear field; Uk, Vk, Uk+1, Vk+1 k+1

z, and k
z  are the respective values at bottom and top of the 

discrete layer, effectively describing extension and rotation, and electric potential at the terminals, 
respectively, of the layer [8].The last two terms describe quadratic and cubic variations of the 
in-plane displacements and electric potential and vanish at top and bottom of the discrete layer, since 
the polynomial functions k

3  and  have been selected to ensure displacement continuity across 
the discrete layer boundaries, 
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(a) 

 
(b) 
Figure 1. Schematic representation of the high-order layerwise laminate theory in a typical laminate configuration 
analyzed with n-discrete layers. a) Kimematic approximation through the thickness for the in-plane displacements 
and electric potential, b) Assumed field components through the thickness of a discrete layer; the linear component 

corresponds to a linear layerwise model. 
 



The high-order terms ,  and k
x

k
y

k
x , k

x  in eq. (4) may be described as “hyper-rotations” of 
each discrete layer introduced by the quadratic and cubic polynomials, respectively. The present 
model distinguishes in this point from high-order approximations globally smeared through the 
laminate thickness, since the high-order terms are additional degrees of freedom of the discrete layer. 
The same applies also for the high-order electric potential terms k

 , k
 . 

 
 

2-4. Through-Thickness Strain and Electric Field 
 

In the context of the kinematic assumptions (3), the interlaminar shear strains S4 and S5 take 
the form: 
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The comma in the subscripts indicates differentiation. The first two right hand side terms yield a 
constant shear term, while the last two terms provide a linear and a quadratic distribution through the 
thickness of the k-th layer. The in-plane strains are expressed as 
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The electric field in the poling direction is derived by combining eqs. (2) and (4), 
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and accounts for a quadratic through-thickness profile in each discrete layer. 

 
 

2-5. Laminate Electric Enthalpy and Laminate Matrices 
 

The electric enthalpy of the piezocomposite laminate is: 
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where k=1,…,n are the discrete layers of the laminate, kQ    (dimension 16x16) and k

sQ    
(dimension 10x10) are the in-plane and interlaminar shear stiffness matrices, respectively, of the 



discrete layer [29] and  and  are the in-plane and interlaminar shear strain vectors, respectively, 
of the discrete layer given by, 
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k  P  (dimension 16x4) and L  (dimension 4x4) are the piezoelectric and electric permittivity layer 

matrices, respectively, given by 
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where i=1,2. As seen in eq. (10) the piezoelectric laminate matrix is not symmetric. The respective 
submatrices for both piezoelectric and permittivity matrices are formulated by taking into account 
eqs. (1), (7) and (8) and are shown in the Appendix. 
 
 
2-6. Through-Thickness Shear Stress Compatibility 

 
Combination of interlaminar shear strains in eq. (4) with Hooke´s law yield a quadratic shear 

stress field through the thickness of a discrete layer. The through-thickness continuity of the 
interlaminar shear stresses between adjacent layers is weakly maintained through the equations of 
equilibrium (3) (Fig. 2a). To further ensure shear stress continuity, compatibility equations were 
explicitly imposed. The interlaminar shear stresses should be continuous between adjacent layers 
(eqs. 13b) and vanish at the top and bottom of the plate for traction free surfaces (eqs. 13a and c), 
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The imposition of equations (13) combined with the high-order approximation of the 

displacement field variables (4) enables prediction of compatible interlaminar shear stresses through 
the thickness of the plate by using a minimum number of discrete layers. Moreover, 2n+2 
hyper-rotations of the composite laminate, namely all y , x  and the y ,  of the top discrete 
layer are eliminated, while the remaining elastic variables of the discrete layers get coupled, 
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where  are reduction matrices arising from the rearrangement of eqs. (13), and their 
superscript (k,m with m≤k) indicates the expression of hyper-rotations of layer k as a function of the 
interlaminar shear vector of layer m [29]; 
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(b) 
Figure 2. Effect of interlaminar shear stress compatibility imposition: a) Discontinuous distribution of interlaminar 
shear stress σ5 through the thickness of two adjacent disceret layers in the case that no compatibility conditions are 

imposed, b) Continuous interlaminar shear stress distribution by imposition of compatibility conditions. 
 
The elimination of respective high-order in-plane elastic variables involves similar strain 

vectors  
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which yield the requirement of a C1-continuous transverse displacement approximation in the x-y 
plane. The reduced stiffness and piezoelectric laminate matrices arise from static condensation and 
are shown in the Appendix. 
 
 
2-7. Finite Element Implementation 

 
A C1-continuous finite element [28] was modified to include electric degrees of freedom. The 

generalized state variables in the element were approximated as, 
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where k=1,…,n+1, l=1,…,n-1, m=1,…,n; ξ and η are the element local coordinates and i denotes 
finite element node; H are 2-D Hermitian polynomials [30] and N are linear shape functions. Thus, 
the current finite element has 7n+5 nodal degrees of freedom. 
 
 
2-8. Coupled Piezoelectric Structural System 

 
Combination of Eqs. (15-17) with the expressions of the reduced laminate matrices and 

substitution into the governing equations of equilibrium (3) leads to the formulation of the coupled 
piezoelectric system in discrete matrix form: 
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Submatrices  uuK , uK    and  indicate the elastic, piezoelectric and permittivity matrices of 
the structure; superscripts F and A indicate, respectively, sensory (free) and active (applied) electric 
potential components; {P} is the applied mechanical force vector and {Q

K

F} is the applied electric 
charge at the sensors. Solution of the above system yields the coupled electrostatic response of the 
piezoelectric plate in active or/and sensory configuration. 

 
 
 

3. APPLICATION CASES   
 

The present methodology (HLPT) was validated with an exact solution [11] and a linear 
layerwise Ritz-type exact solution [1] (LLPT) for a benchmark thick composite plate. Predictions of 
the mixed-field piezoelectric theory [7] (FSPT), which models the elastic field by a single-layer, were 
also addressed in the validation studies. Further case studies included the sensory response of a 
cantilever thick composite beam and of a sandwich composite plate. The materials considered are 
listed in Table 1. 

 
Table 1. Electromechanical properties of materials considered. 

Material Gr/Epoxy(1) Gr/Epoxy(2) 
Adhesive Foam Pzt-4 

Elastic Properties 

E11  (GPa) 132.4 126.0 6.9 0.049 81.3 

E22  (GPa) 10.8 7.9 6.9 0.049 81.3 

E33  (GPa) 10.8 7.9 6.9 0.049 64.5 

G12  (GPa) 5.7 3.4 2.5 0.0152 30.6 

G13  (GPa) 5.7 3.4 2.5 0.0152 25.6 

G23  (GPa) 3.6 2.0 2.5 0.0152 25.6 

v12 0.24 0.28 0.40 0.42 0.329 

v13 0.24 0.28 0.40 0.42 0.432 

v23 0.40 0.40 0.40 0.42 0.432 

Piezoelectric Properties 

d31 (10-12 m/V) 0.08 0.65 1.60 1.59 1.59 

d32 (10-12 m/V) 0.67 1.70 1.60 1.59 1.59 

Dielectric Properties (ε0=8.85 10-12 farad/m) 

ε33 /ε0 3.0 3.0 3.0 3.0 1475 
 

 
 



3-1. [Pzt-4/0/90]s Plate 
 

A square simply-supported cross-ply thick (a/h=4) composite plate with Graphite/Epoxy(1) 
plies and two piezoelectric layers [1] was studied. Two configurations were considered: 1) a double 
sensory configuration, where a doubly sinusoidal pressure of amplitude 1kPa was applied and 2) an 
active-sensory configuration, where a doubly sinusoidal electric potential of amplitude 200 Volt was 
applied at the inner terminal of the lower piezoelectric layer. In both cases the outer surfaces of the 
piezoelectric layers were grounded. A 10x10 uniform finite element mesh was used for the quarter 
model addressing 5 discrete layers in the case of the HLPT, whereas 24 layers were applied in the 
case of the LLPT.  

Figs 3a and b show predicted deflection and electric potential, respectively, through the 
thickness of the plate in the points of their maximum values. Both are normalized according to [1]. 
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(b) 
Figure 3. Through-thickness distribution of transverse displacement and electric potential, respectively, in a thick 

double sensory cross ply plate. The symbols indicate prediction points. 
 

The present theory correlates well with the linear layerwise formulation for the transverse 



displacement, whereas the small deviation to the exact solution is attributed to transverse 
compressibility and the d33 piezoelectric effect, which both layerwise models neglect. These effects 
are dominant in the electric potential distribution. The electric potential in the composite layers is 
caused by their electric permittivity. Both LLPT and exact solution take into account permittivity in 
all directions, whereas only through-thickness permittivity is considered in the present model. Thus, 
the variation of the electric potential predicted by both LLPT and exact solutions has a parabolic form 
in the composite layers. The transverse out of plane effects smoothen in the active/sensory case as 
seen in Figs. 4a and b. 
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(b) 
Figure 4. Through-thickness distribution of transverse displacement and electric potential, respectively, in a thick 

active-sensory cross ply plate. The symbols indicate prediction points. 
 
Figs. 5a and b present through-thickness distributions of normalized interlaminar shear 



stresses in the points of their maximum values.  
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(b) 
Figure 5. Through-thickness distributions of interlaminar shear stresses in a thick double sensory cross ply plate. 

 
The current solution captures the interlaminar shear response both accurately and efficiently 

using a minimum number of discrete layers. Moreover, it predicts interlaminar shear stress at the 
interfaces between the discrete layers, whereas the LLT gives prediction at the middle of each layer 
and needs refinement to capture the interface response. This key-feature of the current mechanics is 
more clearly illustrated in the active-sensory case (Figs. 6a and b). 
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(b) 
Figure 6. Through-thickness distributions of interlaminar shear stresses in a thick active-sensory cross ply plate. 

 
 

3-2. [0/Adhesive/Pzt-4] beam 
 

The case of a cantilever thick (a/h=9) Graphite/Epoxy2 beam with a piezoelectric layer [9] 
bonded on the upper surface by an adhesive layer highlights the capabilities of the developed 
laminate mechanics. A 25x2 FE mesh and 3 discrete layers through the thickness were used to model 
the beam. The electrostatic response is predicted for both active and sensory configuration. In the 
sensory case a transverse load of 1 kN was applied at the tip, while in the active case a uniform 
potential of 12.5 kVolt was considered to act on the outer surface. Fig. 7a illustrates the distribution of 
interlaminar shear stress at the interface between piezoelectric and adhesive layer in the x-y plane for 



the active configuration. It can be observed that maximum shear stresses appear near the tip of the 
beam. The through-thickness distribution of interlaminar shear stress near the tip is shown in Fig. 7b. 
It yields parabolic profiles, which are efficiently captured by the present solution. 
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(b) 
Figure 7. Distribution of interlaminar shear stress in an active thick composite beam. a) Interfacial stress between 

adhesive-piezoelectric layers along plane, b) Through-thickness distribution. 
 
In the sensory case maximum interlaminar shearing between Pzt-4/Adhesive layers occur 

near the support (Fig. 8a) and is probably affected by edge effects. The distribution of σ5 near the 
middle of the beam is plotted in Fig. 8b and also exhibits a parabolic form. 
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(b) 
Figure 8. Distribution of interlaminar shear stress in a sensory thick composite beam. a) Interfacial stress between 

adhesive-piezoelectric layers along plane, b) Through-thickness distribution. 
 
 
3-3. [0/foam/0/Adhesive/Pzt-4] Sandwich Composite Plate 

 
A moderately thick (a/h=25) simply-supported sandwich plate consisting of Graphite/Epoxy2 

composite faces, foam core and a piezoelectric sensory layer adhesively bonded at the upper surface 
was studied. The plate was subjected to a constant pressure of 1kPa and the outer face of the 
piezoelectric layer was grounded. A 10x10 uniform finite element mesh and 5 discrete layers were 
used to model one quarter of the plate. Figs. 9a, 10a illustrate predicted in-plane distributions of the 
current solution for the interlaminar shear stress σ4, σ5 respectively, at the interface between 
adhesive-piezoelectric layers.  
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(b) 
Figure 9. Distribution of interlaminar shear stress σ4 in a sensory sandwich composite plate. a) Interfacial stress 

between adhesive-piezoelectric layers along plane, b) Through-thickness distribution. 
 

The predicted distributions of interlaminar shear stresses through the thickness of the plate are 
shown in Figs. 9b and 10b respectively. The parabolic distributions observed can be efficiently 
captured by the present methodology. 

 
 
 

3. SUMMARY   
 

A high-order layerwise piezoelectric plate theory and a corresponding finite element were 
presented. The theory enables accurate prediction of the coupled global and local electrostatic 
response of thick composite and sandwich composite plates. Its major contributions lie on the 
accuracy and efficiency in capturing interlaminar shear effects through the thickness, as well as, on 
the prediction of interlaminar shear stress at the interface between composite and piezoelectric layers. 
The latter is crucial information for predicting delamination initiation in strongly inhomogeneous 



laminations, as the ones studied in this work. Future studies will focus on the inclusion of transverse 
compressibility in the developed mechanics and experimental validation in composite and sandwich 
composite plates with piezoelectric patches. 
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(b) 
Figure 10. Distribution of interlaminar shear stress σ5 in a sensory sandwich composite plate. a) Interfacial stress 

between adhesive-piezoelectric layers along plane, b) Through-thickness distribution. 
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APPENDIX  
  

A-1. Formulation of Dicrete Layer Piezoelectric and Electric Permittivity Matrices 
 

The electric permittivity and piezoelectric submatrices of each discrete layer appearing in eqs. 
(12) and (11), respectively, have the following form: 
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where i=1,2 indicates in-plane strains S1 and S2, respectively. 

 
A-2. Static Condensation Applied on Discrete Layer Piezoelectric Matrix 

 
The elimination of high-order in-plane elastic field terms arising from derivation of eqs. (14) 

requires partitioning of the piezoelectric matrix of each discrete layer as,  
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The reduced piezoelectric matrix of each discrete layer is given by, 
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where the submatrices [Πp] are given by, 
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A-3. Formulation of Reduced Laminate Piezoelectric Matrix 

 
The reduced piezoelectric matrix of the laminate is built from all discrete layers as, 
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where the asterisk indicates different dimensions due to elimination of the derivatives of all 
high-order terms  of the upper-surface discrete layer. n n n
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