
19th International Conference on  
Adaptive Structures and Technologies 

October 6-9, 2008 
Ascona, Switzerland 

 
 
 

Piezoelectric Energy Harvesting from Macro-Fiber Composites with an 
Application to Morphing-Wing Aircrafts 

 
 

Alper Erturk1*, Onur Bilgen2, Matthieu Fontenille3, Daniel J. Inman2 
Center for Intelligent Material Systems and Structures  

1 Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg VA 24061 USA  
2 Department of Mechanical Engineering, Virginia Tech, Blacksburg VA 24061 USA 

3 Université de Technologie de Compiègne, Compiègne, France  
* Corresponding author: 310 Durham Hall, Virginia Tech, Blacksburg, VA 24061, USA 

Phone: 1 (540) 231-2910, Fax: 1 (540) 231-2903, E-mail: erturk@vt.edu 
 

 
 
ABSTRACT 
 

The use of piezoelectric materials for low-power generation has been investigated by several 
researchers over the last decade. Typically, unimorph and bimorph cantilevers with conventionally 
poled monolithic piezoceramics have been implemented for this purpose. The experimental and 
modeling efforts in the literature are mostly limited to these monolithic configurations. However, 
there are several excitation conditions and operation environments where the monolithic 
piezoceramic configurations cannot be used due to their extremely brittle nature. The macro-fiber 
composite (MFC) piezoceramic configuration overcomes this issue owing to its flexible and robust 
nature. This paper investigates the MFC configuration for piezoelectric energy harvesting and 
presents a distributed-parameter electromechanical model. MFC unimorph configuration is modeled 
based on the Euler-Bernoulli beam theory and it is assumed to be excited by the translation of its base 
in the transverse direction with superimposed small rotation. A resistive load is considered in the 
electrical circuit for simplicity. After deriving the governing differential equations, closed-form 
solutions for the coupled vibration response and the voltage response are obtained for harmonic base 
excitations. Model predictions are first verified for an MFC unimorph with a brass substrate and then 
validations are given for MFC unimorphs with various substrate materials and thicknesses. For the 
same type of MFC with three different substrate materials (brass, aluminum and stainless steel), it is 
shown that the maximum peak power at resonance excitation is obtained for the aluminum substrate. 
Experimental results for different substrates are predicted successfully by using the coupled 
analytical model proposed here. Finally, results from the preliminary wind tunnel experiments are 
presented for piezoelectric energy harvesting from a flow-excited morphing airfoil with MFCs.    
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1. INTRODUCTION 

 
Vibration-based energy harvesting has received a great attention over the past decade. 

Research motivation in this field is due to the reduced power requirement of small electronic 
components and the ultimate goal is to power such small electronic devices by using the vibration 
energy available in their environment. The three basic vibration-to-electric energy conversion 
mechanisms are the electromagnetic [1,2], electrostatic [3,4] and piezoelectric [5,6] transductions. 
The literature of the last five years shows that piezoelectric transduction has received the most 



attention for vibration-to-electricity conversion and four review articles focusing on piezoelectric 
energy harvesting have been published in the last four years [7-10]. The relevant experimental 
research and possible applications of piezoelectric energy harvesting can be found in the 
aforementioned review articles. 

Typically, a piezoelectric energy harvester is a cantilevered beam with one or two monolithic 
piezoceramic layers (a unimorph or a bimorph). The harvester beam is located on a vibrating host 
structure and the dynamic strain induced in the piezoceramic layer(s) generates an alternating voltage 
output across the electrodes covering the piezoceramic layer(s). Several researchers have investigated 
modeling and applications of monolithic piezoceramics for piezoelectric energy harvesting. Although 
they are very commonly used in several applications, extremely brittle nature of conventional 
monolithic piezoceramics limits their applications only to certain excitation conditions and operation 
environment. Macro-fiber composites (MFCs) [11] developed at NASA Langley Research Center 
has provided a very robust and flexible alternative to the existing monolithic piezoceramics. MFCs 
have been used by several researchers for sensing, actuation and vibration control [12-14]. Recently, 
Sodano et al [15] compared the performance of an MFC sample for power generation against other 
configurations and observed the deficiency of the MFC in power generation due to its low 
capacitance. Even though this is the case, the MFC configuration has several advantages for use in 
energy harvesting applications. The interdigitated electrode configuration reduces the capacitance of 
MFCs, which is not favorable for piezoelectric energy harvesting. However, at the same time it 
allows using the favorable 33-mode of piezoelectricity. Furthermore, it is almost impossible to use 
monolithic ceramics under certain loading conditions. In particular, in development of 
multi-functional – load-bearing – piezoelectric energy harvesters, one cannot use monolithic 
piezoceramics due to their extremely brittle nature and the use of MFCs becomes inevitable.  

The existing literature on analytical and numerical modeling of MFCs has focused on 
homogenization and characterization of their electrical and mechanical properties [14,16,17]. Most of 
the research in the literature has dealt with sensing and actuation applications of MFCs. This paper 
provides a detailed discussion and modeling effort for piezoelectric energy harvesting from MFCs. 
First, a distributed parameter electromechanical model is introduced for piezoelectric energy 
harvesting from MFC unimorphs. A recently introduced closed-form solution (for monolithic 
piezoceramic configurations) [18,19] is implemented here for modeling the coupled dynamics of the 
MFC configuration. The unimorph formulation given here can easily be extended to bimorph 
configurations as well. Modeling of MFC beams is more complicated than that of monolithic beams 
due to the non-uniform and piece-wise defined electric field. Certain assumptions have been made 
and correction factors have been introduced to implement the analytical solution to the MFC 
configuration. After obtaining the closed-form electrical and mechanical response expressions, an 
experimental verification is provided for an MFC unimorph with a brass substrate. Then, a set of 
MFC unimorphs with different substrate materials and thicknesses are tested and modeled. It is aimed 
to identify the best substrate material and thickness among a set of substrates for a fixed MFC type. 
Finally, results from the preliminary wind tunnel experiments are presented for piezoelectric energy 
harvesting from a flow-excited morphing airfoil with MFCs.   

 
 
 
2. DERIVATION OF THE ELECTROMECHANICAL MODEL 
   
2-1. Modeling assumptions 
 

The origin of the coupled equations derived here is the distributed-parameter piezoelectric 
energy harvester model presented by Erturk and Inman [18,19]. The original formulation was given 
for a unimorph cantilever with a monolithic piezoceramic layer excited by the motion of its base [18]. 
Later the coupled model was extended to bimorph configurations and experimental validations were 
presented [19].  



The modeling assumptions of the coupled distributed-parameter problem investigated here 
are as follows: 
 
 Shear deformations and rotary inertia effects are negligible (i.e., Euler-Bernoulli beam 

assumptions). Typical piezoelectric unimorphs are thin beams with large length-to-thickness ratios 
and therefore this is a reasonable assumption. 

 
 Mechanical behavior of the substrate and piezoceramic layers is linearly elastic and oscillations 

are geometrically small. Therefore, the substrate, epoxy and Kapton layers obey the Hooke’s law, 
  

s s sT Y S , e e eT Y S , k k kT Y S                                  (1) 
 

where T  is the bending stress component, S  is the bending stress component and Y  is the 
Young’s modulus of the respective isotropic layer (substrate, epoxy or Kapton are denoted by 
subscripts s, e and k respectively).  

The piezoceramic layer obeys the following linear constitutive relation which is reduced from 
the tensorial representation [20] based on the Euler-Bernoulli beam assumptions: 
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where 3T  is the stress component, 3D  is the electric displacement component, 3S  is the strain 
component, 3E  is the electric field component, 33e  is the effective piezoelectric constant, 33

Ec  is 
effective elastic stiffness component (Young’s modulus) at constant electric filed and 33

S  is the 
effective permittivity component at constant strain. An over-bar denotes that the constant is the 
effective constant in plane-stress conditions and it is not the elasticity component. Here, the 
direction of the dominating mechanical strain and the direction of electric field are the same 
(3-direction) and it is the longitudinal (x) direction of the beam shown in Figure 1. 

 
 Interdigitated electrodes are assumed to have negligible stiffness and mass contribution to the 

unimorph. Therefore the structure is mechanically uniform in the longitudinal direction. 
 
 Epoxy layer boding the MFC and the substrate layers does not cause any shear between these two 

layers. This is a relatively critical assumption since the bonding epoxy layer can be as thick as the 
substrate layer in some cases. 

 

 
Figure 1. Unimorph MFC cantilever under base excitation (active length) 
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2-2. Governing equations of the coupled problem 
 
 
2-2-1. Coupled mechanical equation     
 

Free vibrations of the cantilevered MFC unimorph shown in Figure 1 are governed by the 
following partial differential equation: 
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where ( , )M x t  is the internal bending moment (excluding the moment due to strain rate damping), 

( , )w x t  is the transverse deflection relative to the fixed frame, sc I  is the strain-rate (internal) 
damping term, ac  is the viscous air (external) damping coefficient and m is the mass per unit length 
of the beam. Base excitation is given by  
 

( , ) ( ) ( )bw x t g t xh t                          (4) 
 
Here, ( )g t  is the translation of the base in the transverse direction and ( )h t  is the superimposed 
small rotation of the base. Transverse displacement response of the beam relative to the fixed frame 
can be expressed as 
 

( , ) ( , ) ( , )b relw x t w x t w x t              (5) 
 
where ( , )relw x t  is the transverse displacement response relative to the moving base and ( , )bw x t  is 
given by Equation (4). Substituting Equation (5) into Equation (3) gives a forced partial differential 
equation for the relative response, ( , )relw x t : 
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After expressing the strain component in terms of the curvature and the electric field in terms of the 
voltage ( 3( ) ( ) / elE t v t    where ( )v t  is the voltage across the interdigitated electrodes and el  is 
the effective electrode spacing in Figure 1) one can integrate the moment of axial stress over the 
cross-section of the beam and this process yields one term related to the bending stiffness of the beam 
and one term related to piezoelectric coupling: 
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where the expression for the bending stiffness (YI) is obtained from cross-section transformation 
(homogenization) and ( )x  accounts for the spatial distribution of the electric potential: 
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Here, eN  is the number of electrode pairs over the beam length (  0/ 2e act eN L u u   where actL  is 



the active beam length, eu  is the width of each electrode in the direction of beam axis, 0u  is the width 
of each non-electroded region in the direction of beam axis), ( )H x  is the Heaviside function and   
is a coupling constant. According to Equation (8), at an arbitrary instant of the motion, the electric 
potential is assumed to be linearly decreasing from ( )v t  to 0 in 0 1i ix x x   whereas it is assumed to 
be linearly increasing from 0 to ( )v t  in 2 3i ix x x  . The coupling treatment given by Equation (8) is 
a summation of eN  terms due to the piezoelectric coupling on small fiber elements. Therefore, the 
positions 0ix , 1ix , 2ix  and 3ix  change with the index i. As one moves from the clamped end to the 
free end, the index number increases as shown in Figure 1. For instance, starting from the clamped 
end,  
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and so on for 1... ei N  with the increasing index number until the end of the active length (Figure 1). 

The coupling constant in Equation (8) is given by 
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where ptb  is the total width of the piezoceramic fibers,  ph  is the thickness of the piezoceramic fibers, 

ch  is the position of the bottom of the piezoceramic layer from the neutral axis, dh  is the position of 
the top of the piezoceramic layer from the neutral axis and the effective electrode spacing is given by 

0 / 2el eu u   . Note that, the electric field is assumed to be uniform over the effective electrode 
spacing el . The form of the coupling constant given by Equation (10) is similar to the coupling 
constant given for a unimorph cantilever with a monolithic ceramic layer [18] where the electric field 
is uniform and the 31-mode is used instead of the 33-mode with non-uniform electric field. In 
Equation (10),   is an empirical correction factor that reduces the thickness of the piezoceramic to 
an effective value due to the non-uniform distribution of the electric field over the thickness. In other 
words,   reduces the physical piezoceramic thickness that causes the piezoelectrically induced 
bending moment with non-uniform electric field to a cross-section with a uniform electric field 
distribution having the equivalent bending moment (it can take values between 0 and 0.5). As 
discussed in Section 3, an average value of 0.2   is identified by matching the model predictions 
for a set of experiments using M 8507 P1 type MFC [21] with different substrates (which corresponds 
to a 40 % thickness reduction). Clearly, this approximation is defined for a specified effective 
electrode spacing ( 0 / 2el eu u   ). If one defines the effective electrode spacing differently (e.g., 

0el eu u   ), a different value would be identified for  . The former expression is preferred here 
for the effective electrode spacing (Figure 1). 
 
 
 



2-2-2. Coupled electrical equation     
 

As can be seen from Figure 1, the electrical circuit consists of a resistive electrical load ( lR ) 
only (in addition to the inherent capacitance of the MFC piezoceramic). Therefore the circuit that the 
MFC piezoceramic operates into has an admittance of 1/ lR . From the IEEE standard on 
piezoelectricity [20], one can write  
 

( )

lA

d v tdA
dt R
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where ( )v t  is the voltage across the resistive load,  D  is the vector of electric displacements, n  is the 
unit outward normal on the electrode surface and the integration is performed over the electrode area 
(Figure 2). It should be noted from Figures 1 and 2 that the middle electrode finger in each electrode 
pair is assumed to have zero electric potential as a convention. This way the resulting potential 
difference (voltage) across the resistive load is directly ( )v t . One could as well assume two different 
potentials as 1( )v t  and 2 ( )v t  such that the variation in between is still linear and the voltage across the 
resistive load is the difference between these potentials. However, we use the former approach in the 
formulation given here. 
 
 

 
 
Figure 2. Enlarged view of a section showing the non-uniform electric field lines and the assumed 

(linear) electric potential distribution 
 

In the constitutive relation given by Equation (2), 3D  was assumed to be the only nontrivial 
component of electric displacement vector. It should be noted from Figure 2 that the electric field 
lines are almost in the 3-direction (x-direction) away from the electrodes whereas they make an angle 
with the electrode surface in the vicinity of the electrodes. Therefore, we introduce a correction factor 
(  ) to account for the angle between the electric displacement component and the surface normal on 
the electrode surface. After substituting the second row of Equation (2) into Equation (11), the latter 
equation becomes: 
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where pC  is the capacitance of the MFC (overhang region), pch  is the center of the piezoceramic 
from the neutral axis and the two integrals on the right-hand side of Equation (12) are for the lower 
and the upper electrode pairs. Because the electric displacement component is not perpendicular to 
the electrode surface, the correction factor   has the effect of reducing the charge collocated by the 
electrodes (using 0.5   for M 8507 P1 type MFC results in accurate model predictions for different 
substrate materials as shown in Sections 3 and 4). 

Equation (12) can be rewritten as 
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 The integral expression in Equation (13) can be expanded according to the region covered by 
the electrodes in Figure 1: 
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2-2-3. Modal analysis 
 
 The vibration response of the MFC unimorph relative to its base can be represented as an 
absolutely and uniformly convergent series of the eigenfunctions as 
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r
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where ( )r x  and ( )r t  are the mass normalized eigenfunction and the modal mechanical response of 
the clamped-free beam for the rth mode, respectively. Based on the proportional damping assumption 
(strain-rate damping is assumed to be stiffness-proportional whereas air damping is assumed to be 
mass-proportional), the eigenfunctions of the proportionally damped system become the 
eigenfunctions of the respective undamped system: 
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where the dimensionless frequency numbers ( r ) are obtained from  
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and r  is expressed as  

 sinh sin
cosh cos

r r
r

r r

 
 





                      (18) 

 
Moreover, r  is the undamped natural frequency of the rth mode: 
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which is approximately the resonance frequency of the unimorph (for light mechanical damping) 
when the MFC is in short circuit conditions. Note that the mass-normalized eigenfunctions satisfy the 
following orthogonality conditions: 
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2-2-4. Governing equations in modal coordinates 
 
 Equations (7) and (14) are the electromechanically coupled equations of the unimorph 
cantilever under base excitation. Substituting Equation (15) into Equation (7) and employing the 
orthogonality conditions of the eigenfunctions yield 
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is the modal coupling term and 
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is the modal mechanical damping ratio that includes the effects of both strain rate damping and 
viscous air damping. It is clear from Equation (23) that strain-rate damping is assumed to be 
proportional to the bending stiffness of the beam whereas air damping is assumed to be proportional 
to the mass per unit length of the beam. 

The modal mechanical forcing function in Equation (21) can be expressed as 
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r r rN t N t N t                       (24) 

 
Here, the components of mechanical excitation (which are the inertial and the damping excitation 
terms) are given by the following expressions, respectively, 
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where 
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Typically, for harvesters operating in air, excitation due to the external damping is negligible when 
compared to the inertial excitation (i.e., ( ) ( )c m

r rN t N t ) and one can simply set ( ) 0c
rN t  . 

  Equation (15) can be substituted into Equation (14) to give 
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Equations (21) and (27) are the piezoelectrically coupled equations of the unimorph in modal 
coordinates. 
 
 
2-3. Steady-state electromechanical response to harmonic excitation 
 
 If the base motion is harmonic of the form 0( ) j tg t Y e   and 0( ) j th t e   such that 

 0 0( , ) j t
bw x t Y x e    (where  0Y  and 0  are the amplitudes of the base translation and rotation, 

respectively,   is the driving frequency and j is the unit imaginary number), modal mechanical 
response and the voltage response take the following forms at steady state: 
 

( ) j t
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where r  is the complex modal mechanical response amplitude and 0V  is the complex voltage 
response amplitude. Using these relations in Equation (21) gives  
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Similarly, from Equation (27), one obtains 

 
0

1

1
p r r

rl

j C V j
R

  




 
   

 
                                            (32) 

 
One can extract r  in Equation (30) and substitute that into Equation (30) to obtain the complex 
voltage amplitude 0V , yielding 
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Then, r  is obtained by substituting 0V  into Equation (31), which eventually gives the following 
relation from Equation (15): 
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Equation (34) is the vibration response of the unimorph relative to its moving base. Equation (34) can 
be used in Equation (5) to obtain the vibration response relative to the fixed frame.  
 
 
 
3. MODEL VERIFICATION 
  
3-1. Analytical FRFs 
 
 If the base of the unimorph does not rotate (i.e., 0( ) 0j th t e   ) and the component of 
excitation due to external damping is negligible, Equation (31) reduces to 
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Then, the voltage output – to – base acceleration FRF can be extracted from Equation (33) as 
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Similarly, the relative displacement – to – base acceleration FRF is extracted from Equation (34): 
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It is worthwhile to mention that the laser vibrometer measures the absolute velocity of the 

beam at the measurement point mx L . Therefore, the FRF given by Equation (37) must be modified 
as follows to give the absolute velocity response per base acceleration: 
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which is evaluated at the measurement point of the laser vibrometer.   
 
 



 
3-2. Experimental setup 
 
 The experimental setup used for model verifications is shown in Figure 3a. The MFC 
unimorph is excited from its base by means of an LDS electromagnetic shaker. The base acceleration 
of the harvester is measured by a low mass accelerometer (PCB U352C22) and the velocity response 
of the harvester at the free end is measured by a laser vibrometer (Polytec OFV303 laser head, 
OFV3001 vibrometer). 13 different resistive loads have been used in the experiments: 1.2, 4.7, 9.9, 
21.5, 37.5, 44.9, 90.9, 179.5, 247.8, 319.2, 429.3, 685.1 and 995 kohms. Note that the input resistance 
of the data acquisition system (SigLab) is measured as 995 kohms. Therefore, this value cannot be 
exceeded in the experiments with this data acquisition unit. Coherence plots for the velocity and 
voltage FRFs for all resistive loads are plotted in Figure 3b and the coherence is very good except for 
very low frequencies (less than 20 Hz). 
 
  

                          
 

 
Figure 3. (a) Experimental setup used for testing of an MFC unimorph and the (b) coherence plots of 

the velocity and voltage measurements 
 

 The MFC unimorph investigated in this section has a brass substrate of 0.0762 mm thickness 
and the MFC layer is M 8507 P1 manufactured by the Smart Material Corporation [21]. This 
piezoceramic uses Navy Type II type (PZT-5A) piezoceramics. For the typical data of PZT-5A from 
the literature, plane-stress value of the piezoelectric constant is 33 19.1e  C/m2 and that of the elastic 
stiffness at constant electric field is 33 64Ec  GPa. The reported value [21] of capacitance is 2.27 nF 
for the entire active region (for the free active length of 85 mm). Since the clamped region of the MFC 
is inactive, the effective capacitance is 1.95 nF from 2.27(73/85) nF where 73 mm is the active 
overhang length in the clamped condition). The epoxy type used for bonding the substrate and MFC 
layers is 3M DP460 and its shear strength is 4500 psi (~31 MPa). The geometric parameters of the 
MFC unimorph are listed in Table 1. The substrate material (brass) is assumed to have a Young’s 
modulus of 105 GPa and a mass density of 9000 kg/m3. For the epoxy and Kapton materials, a 
Young’s modulus of 3 GPa is assumed (which is much less than the Young’s moduli of the 
piezoceramic and substrate) in the bending stiffness (YI ) calculations. Total mass per length of the 
MFC and the bonding epoxy layer are extracted experimentally as 0.0123 kg/m. The laser vibrometer 
measures the velocity response at 74mL  mm. For this MFC sample, the correction factors of the 
analytical model described in Section 2 are identified as 0.2   and 0.5  , and validity of these 
factors is observed for different substrate materials. 
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Table 1. Geometric parameters of the MFC unimorph with a brass substrate 
 

Total overhang length, L  [mm] 80.5 

Overhang length of the active region, actL  [mm]  73 
Width of the substrate, sb  [mm] 16 
Width of the active region, actb  [mm] 7.3 
Thickness of each piezoceramic fiber, ph  [mm] 0.18 

Width of each piezoceramic fiber, pb  [mm] 0.355 

Width of each epoxy fiber, epb  [mm] 0.0513 

Number of piezoceramic fibers, pN  18 

Electrode width in the length direction, eu  [mm] 0.097 
Electrode spacing in the length direction, 0u  [mm] 0.41 
Effective electrode spacing, el  [mm] 0.046 
Number of electrode pairs, eN  72 
Thickness of each Kapton layer (in the active region) , kah  [mm] 0.06 
Thickness of the Kapton in the inactive region, kih  [mm] 0.12 
Thickness of the substrate, sh  [mm] 0.0762 
Thickness of the epoxy layer, eph  [mm] 0.028 

  
 
3-3. Model predictions and experimental results 
   
 For the set of electrical loads used, the experimental voltage – to – base acceleration and tip 
velocity – to – base acceleration FRFs are plotted along with the analytical predictions in Figure 4. 
The analytical FRFs in Figure 4a are generated using Equation (36) whereas those in Figure 4b are 
generated using Equation (38). Modal mechanical damping ratios are identified for a fixed resistive 
load as 1 0.0085  , 2 0.0075  , and 3 0.011   for the first three vibration modes. The first three 
natural frequencies of the unimorph (28.4 Hz, 178.8 Hz, and 489.7 Hz in short circuit conditions) are 
predicted with relative errors of 0.4 %, 0.06 % and 2.3 % for modes 1, 2, and 3, respectively.   
 

 
 

Figure 4. (a) Voltage FRFs and (b) tip velocity FRFs for 13 different resistive loads 
  
  

Figure 5 shows detailed views of the voltage FRF around the first three modal frequencies of 

 (a)  (b) 



the MFC unimorph. Note that the model predictions are in very good agreement with the 
experimental results especially in the first two modes. It should be noted that, for the geometric 
parameters given in Table 1, the length-to-thickness aspect ratio of the MFC unimorph is about 200. 
Therefore, for these practical modes, structral shear deformations are not expected to be pronounced. 
The inaccuracy in the model predictions around the third vibration mode is attributed to the shear 
effects in the bonding epoxy layer. 

 

  

 
 

Figure 5. Detailed views from the voltage FRF around different vibration modes; (a) mode 1,               
(b) mode 2 and (c) mode 3  

 
 Variation of the peak electrical voltage out with load resistance for excitation at the short 
circuit resonance frequency of the first vibration mode (28.4 Hz) is plotted  in Figure 6a. The voltage 
output of the MFC unimorph increases from 0.13 Volts/g to 87 Volts/g as load resistance is increased 
from 1.2 kohms to 995 kohms. This graphs is then used to plot the variation of the peak power with 
load resistance as shown in Figure 6b. The maximum power is obtained as 7.6 mW/g2 for the largest 
resistive load used (995 kohms). As mentioned before, the maximum resistive load used in the 
experiments is restricted by the input resistance of the data acquisition system (which is 995 kohms). 
It is clear from Figure 6b that the optimum load resistance of this unimorph is greater than this value. 
Yet this data acquisition system does not allow esimating the optimum load resistance 
experimentally. It can analytically be shown that the optimum load resistance of this sample for 
excitation at 28.4 Hz is approximately 2.35 Mohms.  
 
 

 (a)  (b) 

 (c) 



  
 

Figure 6. Variations of the (a) peak voltage and (b) peak power with electrical load resistance for 
excitation at the short circuit resonance frequency of the first mode (28.4 Hz)  

 
 
 

4. THE EFFECT OF SUBSTRATE MATERIAL AND THICKNESS ON PIEZOELECTRIC 
POWER GENERATION 
  
4-1. Experimental setup 
 
 A set of MFC unimorphs with different substrate materials and thicknesses is tested and 
modeled in this section to investigate the variation of the electrical power output with substrate 
material and thickness. The MFC type is the same as the one that was tested and modeled in the 
previous section (M 8507 P1). The experimental setup used for testing the samples under base 
excitation is shown in Figure 6a and it is very similar to the setup shown in Figure 3a (a laser 
vibrometer, electromagnetic shaker with a low-mass accelerometer for base excitation, a resistive 
electrical load in the circuit and the data acquisition system). The MFC unimorphs tested and 
modeled are shown in Figure 6b. These 9 samples use 3 different substrate materials (brass, 
aluminum and stainless steel) with 3 different thicknesses (0.002”, 0.003” and 0.004” or 50.8 m , 
76.2 m  and 101.6 m ). Overhang length of each unimorph is approximately 80 mm. Other than the 
substrate thickness and the thickness of the epoxy layer between the MFC and the substrate, the 
geometric parameters are as given in Table 1. Average epoxy thickness for each sample is shown in 
Table 2. Note that, typically, the epoxy thickness for each sample shows a large deviation over the 
length of the beam and it is an important source of inaccuracy in model predictions. 
 

                 
 
Figure 7. (a) Experimental setup used for testing the MFC unimorphs and the (b) MFC unimorphs 

with different substrates  
 

  
 (a)  (b) 

 (a)  (b) 



In the following sections, the power outputs for different substrate thicknesses are compared 
with each other for different substrates. In all cases, the MFC is assumed to be excited at its first short 
circuit resonance frequency. Model predictions are plotted along with the experimental results. 
Finally, the power outputs of different substrates are compared with each other and the best substrate 
material and thickness are identified among the samples used here. 
 

Table 2. Thickness of the epoxy layer for each unimorph 
 

Substrate 
material 

Substrate 
thickness [mm] 

Average epoxy 
thickness [mm]  

Brass 0.0508 0.010 
Brass 0.0762 0.028 
Brass 0.1016 0.033 

Aluminum 0.0508 0.015 
Aluminum 0.0762 0.018 
Aluminum 0.1016 0.019 

Steel 0.0508 0.020 
Steel 0.0762 0.018 
Steel 0.1016 0.059 

 
 
4-2. Brass substrates 
 
 The fundamental resonance frequency of the MFC unimorphs with brass substrates changes 
from 25.4 Hz to 30.5 Hz as the substrate thickness is increased from 50.8 m  to 101.6 m . As can be 
seen from Figure 8, the maximum voltage and power outputs for each resistive load are obtained for a 
76.2 mm substrate thickness. Model predictions are in very good agreement with the experimental 
results. 
 

 
 

Figure 8. Variations of the (a) peak voltage and (b) peak power outputs of the MFCs with brass 
substrates with electrical load resistance for excitation at the short circuit resonance frequency of the 

first mode 
 

 
4-3. Aluminum substrates 
 
 For the MFC unimorphs with aluminum substrates, the fundamental resonance frequency 
changes from 27.6 Hz to 34.2 Hz as the substrate thickness is increased from 50.8 m  to 101.6 m . 
As in the previous case, Figure 9 shows that the maximum voltage and power outputs for each 
resistive load are obtained for a 76.2 mm substrate thickness. The model predictions are successful.  

 (a)  (b) 



 

 
 

Figure 9. Variations of the (a) peak voltage and (b) peak power outputs of the MFCs with aluminum 
substrates with electrical load resistance for excitation at the short circuit resonance frequency of the 

first mode 
 
 
4-4. Stainless steel substrates 
 
 As the substrate thickness is increased from 50.8 m  to 101.6 m , the short circuit resonance 
frequency of the MFC unimorphs changes from 30.5 Hz to 38 Hz. The analytical model is again very 
successful in predicting the results for two of the substrate thicknesses (50.8 m and 76.2 m ), 
however, it deviates from the experimental results of the case with a 101.6 m thick substrate. The 
unexpected trend of this sample is more evident in Figure 10b for the peak power graph. When the 
epoxy thickness of this sample is checked from Table 2, it turns out to be much larger than the other 
samples. There might as well be other reasons (or defects) that make this sample behave in a way that 
cannot be predicted by the model especially for large resistive loads. Yet, in the experimental results 
of Figure 10b, the maximum power is still obtained for a 76.2 m substrate thickness as in the cases of 
brass and aluminum substrates. 

 

  
 
Figure 10. Variations of the (a) peak voltage and (b) peak power outputs of the MFCs with stainless 
steel substrates with electrical load resistance for excitation at the short circuit resonance frequency of 

the first mode 
 
 
 
4-5. Comparison of different substrates for power generation 
 
 Having modeled the 9 MFC unimorph samples shown in Figure 7b, it is aimed in this section 

 (a)  (b) 

 (a)  (b) 



to compare performances of all these samples with each other. Therefore, the maximum peak power 
of each substrate material is plotted against substrate thickness. Figure 11 shows that, for the substrate 
thicknesses investigated here, 76.2 m is better for power generation compared to the substrate 
thicknesses of 50.8 m  and 101.6 m . Among the substrate materials used, the MFC unimorph with 
aluminum substrate yields the best power output. A more accurate comparison would be based on the 
power density (power per overhang volume) or the specific power outputs (power per overhang mass) 
of these samples. Note that, for a fixed substrate thickness and for similar epoxy thicknesses 
(compare aluminum and brass in Table 2), the power density trends would not change the superiority 
of the aluminum substrate. Since the mass density of the aluminum is the lowest among the samples 
investigated here, comparison of the specific power would again prove the superiority of the 
unimorph with a 76.2 m  thick aluminum substrate over the others.     
 

 
 

Figure 11. Comparison of the peak power outputs of the MFC unimorphs with different substrate 
materials and thicknesses for resonance excitation (experimental data) 

 
 
 
5. PRELIMINARY RESULTS FOR ENERGY HARVESTING FROM A FLOW-EXCITED 
MORPHING AIRFOIL  
 
 Energy harvesting experiments are conducted on a thin morphing airfoil which has been 
investigated for MFC actuation by Bilgen et al [22]. An illustration of the airfoil in its morphed shape 
is given in Figure 12. The airfoil (133 mm span and 127 mm chord) is a bimorph with four M 8557 P1 
MFC piezoceramic patches (two on the top surface and two on the bottom surface). Only the two 
patches on the top surface are employed for power generation in this study. The electrical outputs of 
the two MFC patches are combined in parallel and connected to a resistive electrical load. The 
substrate material of the airfoil is stainless steel. The morphing airfoil is supported by two revolute 
joints on each (span-wise) end, which are located at 5 % chord and 50 % chord from the leading edge. 
The location of chord-wise support points is derived using a structural/aerodynamic optimization 
procedure presented by Bilgen et al [23].   
 
 

 
 

Figure 12. Flow excitation of a morphing airfoil for piezoelectric energy harvesting 
 



The energy harvesting experiments are conducted for 9 different resistive loads (9.76, 21.2, 
52.5, 89.5, 106.9, 320, 494, 661.5 and 995 kohms). It should be noted that no actuation voltage is 
applied to the airfoil; hence the airfoil is simply a flat-plate bimorph. The airfoil is placed in a 137 mm 
tall (span-wise) and 356 mm wide test section of a wind tunnel. Velocity sweep at 0, 5, 10 and 15 m/s 
is conducted where an angle of attack (AOA) sweep of 0, 10, 20 and 30 degrees is done for each 
velocity.  The time history of MFC voltage output across the resistive load is measured. Along with 
the total voltage output of the MFC patches (combined in parallel), the trailing edge velocity of the 
airfoil is also measured with a laser vibrometer. Velocity and voltage signals are recorded by means 
of a data acquisition system (SigLab). Times histories of the trailing edge velocity response and 
voltage response across the resistive load are displayed in Figures 13a and 13b, respectively (for an 
electrical load resistance of 98 kohms and an AOA of 20 degrees). 
 

 
 
Figure 13. Time histories of the (a) trailing edge velocity response and the (b) voltage output of the 

MFCs for different flow velocities (for a 98 kohm load resistance and 20 degrees AOA)  
 
 Due to the random behavior of the electrical and mechanical response, the RMS (root mean 
square) values of the electrical power are obtained using 7 seconds of the voltage time history for 
each value of AOA and flow velocity. Figure 14 shows the RMS power versus load resistance graphs 
for 4 different values of AOA. In each graph, the RMS power curves are plotted for different flow 
velocities (including no flow, i.e., zero flow velocity). Expectedly, power output increases with 
increasing flow velocity. The maximum RMS power is obtained as 7 W  for a 20 deg. AOA and 98 
kohm load resistance at a flow velocity of 15 m/s (Figure 14c).     

The RMS power values obtained in these preliminary experiments are relatively low 
compared to typical performance results reported for cantilevered piezoelectric energy harvesters 
(just like the ones investigated in Sections 3 and 4 of this paper). This is mainly because of the fact 
that flow excitation is not a persistent resonance frequency excitation and its frequency content is not 
necessarily close to a resonance frequency of the airfoil. As can be seen from the trailing edge 
velocity and voltage response histories given for the optimum load resistance and AOA (Figure 13), 
the time histories of the electrical and mechanical responses are fairly random. One would expect 
much larger power outputs if the airfoil was excited around one of its resonance frequencies 
(preferably at the fundamental resonance frequency). It should be noted that larger power outputs 
means stronger vibrations of the airfoil. Therefore, in practice, the trade-off is between the stable 
behavior of the aircraft wing and the amplitude of the electrical power output.   

 

 (a)  (b) 



 
 

 
 

Figure 14. Variation of the electrical RMS power with load resistance for different values of AOA; (a) 
AOA=0 deg., (b) AOA=10 deg., (c) AOA=20 deg., (d) AOA=30 deg.  

 
 
 
6. CONCLUSIONS 
 
 Piezoelectric energy harvesting has been investigated by several researchers for 
vibration-based energy harvesting in the last five years. Typically, a piezoelectric energy harvester is 
a unimorph or a bimorph with monolithic piezoceramic layers. There are several excitation types and 
operation environments where conventional monolithic piezoceramics cannot be used due to their 
brittle nature. The MFC configuration constitutes a unique alternative to monolithic piezoceramics 
due to its robust and flexible nature.  
 In this work, a distributed-parameter electromechanical model is proposed for predicting the 
coupled mechanical and electrical response of MFC unimorphs for piezoelectric energy harvesting. 
The model proposed here is based on a recently proposed closed-form solution for a monolithic 
unimorph. Modeling steps are given in detail and correction factors are introduced in order to handle 
the non-uniform electric field of the MFC configuration. After obtaining the relations for the voltage 
response and the vibration response at steady state, model verification is presented for an MFC 
unimorph with a brass substrate. It is shown that the model presented here can successfully predict the 
coupled dynamics of the MFC unimorph for a wide range of electrical load resistance.  

Then, a set of MFC unimorphs with different substrate materials and thicknesses are tested 
and modeled. Among the samples studied, the best substrate material and thickness ratio are 
identified for the maximum power generation. The results of this analysis are predicted by the 
coupled model successfully. Finally, results from the preliminary wind tunnel experiments are 
presented for piezoelectric energy harvesting from a flow-excited morphing airfoil with MFCs as an 
introduction to energy harvesting from MFCs of morphing-wing aircrafts.   
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