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ABSTRACT 
 
Magnetostrictive materials exhibit an apparent change in Young’s modulus at different 
magnetization and stress states. In this work, the variability in modulus is investigated using 
experiments and simulations of single crystal iron-gallium (Galfenol) alloys having 16 and 19 atomic 
percent gallium. Both of these alloys showed more than 60 % change in Young’s modulus along 
[100] direction on varying their magnetization and stress states compared to their modulus at 
saturation state. A review of methods for quantifying variability in modulus is provided and for use in 
device design, a function, ΔE(,H), is introduced for bounding variability of modulus between 0 and 
100 %. An energy-based non-linear constitutive model was used to predict the variable modulus in 
Galfenol as a continuous function of stress and magnetic field. Model predictions show good 
correlation with experimental results. The ability to model and quantify the variation in modulus 
provides tools for design of smart material applications where the ability to vary and control modulus 
is of interest. 
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1. INTRODUCTION  
 

Magnetostrictive materials exhibit an apparent change in Young’s modulus at different 
magnetization and stress states [1]. Hence, the Young’s modulus in magnetostrictive materials under 
a particular stress can be controlled in real time by changing magnetic field (H), which can be useful 
in various applications such as tunable resonator [2], active vibration control [3], impedance 
matching in magnetostrictive actuation and controlling acoustic wave propagation. 

The apparent change in Young’s modulus owes its origin to the magnetomechanical coupling 
present in magnetostrictive materials. The total strain (ε) in such materials is obtained by the 
superposition of elastic and magnetoelastic strains as shown in Eq. (1). 
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While the elastic strain is only dependent on the mechanical stress (σ) and a purely 

 



mechanical Young‘s modulus (ES) of the material, the magnetoelastic strain (λ) arises due to both 
stress and magnetic field. A magnetic field or stress applied to the material changes the alignment of 
the atomic magnetic moments in the material which is often manifested as a change in magnetization 
and magnetoelastic strain in the material. The magnetoelastic strain adds to the elastic strain until the 
material is saturated, beyond which only elastic strain occurs.  

There are two kinds of saturation in magnetostrictive material – magnetic and magnetoelastic. 
Application of a magnetic field high enough to overcome both a pre-stress imposed on the material 
and the material’s magnetocrystalline anisotropy (K) can cause magnetic saturation of the material by 
aligning all the magnetic moments parallel to the direction of magnetic field. Application of tensile or 
compressive stresses high enough to overcome a bias magnetic field and the magnetocrystalline 
anisotropy can magnetoelastically saturate the material by aligning all the magnetic moments 
antiparallelly. At high tensile stresses, the magnetic moments align at 0o and 180o from the direction 
of stress whereas at high compressive stresses, the magnetic moments align at 90o and 270o from the 
direction of stress. It is this reorientation of the magnetic moments which manifests as an apparent 
change in Young’s modulus. 

Young’s modulus, which is defined as the ratio of incremental change in applied stress to that 
of incremental change in total strain, appears to be softer than a purely mechanical Young’s modulus 
when the magnetoelastic strain varies with stress and magnetic field in an unsaturated sample. Once 
the material saturates and the magnetoelastic strain becomes a constant, the value of Young’s 
modulus asymptotes towards a constant. This constant value is called by various names such as 
stiff/hard modulus, Young’s modulus at saturation (ES) and as a purely mechanical Young’s 
modulu

linearly decreasing strain-dependent modulus (E-1dE/dε ~ 5 x 10-6) was 
observe

nal stress distribution theory to model the ΔE effect as 
a funct

s. 
Early work [1] based on tensile testing of iron/nickel alloy wires used the term ΔE effect at a 

constant stress as (EH – Ea)/EH. Here Ea is the modulus of the material at demagnetized state and is 
also known as the soft modulus while EH is the modulus at an applied magnetic field H. The modulus 
was calculated by applying different constant stresses to the wires and measuring the strains due to an 
incremental change in stress under demagnetized state and different applied magnetic fields 
respectively. Both positive and negative values of ΔE effect were shown and the highest ΔE effect of 
25.2 % was observed in 70.32 % Nickel-Steel at a stress of 16 MPa and an applied field of 0.76 kA/m. 
In a separate work [4], a 

d in nickel alloys. 
Assuming a purely rotational magnetization process, the first analytical expression for the ΔE 

effect was derived by Becker and Doring [5]. Lee [6] reported a mathematical interpretation of the ΔE 
effect and reviewed contemporary works to point out that since Ea depends on the magnetocrystalline 
anisotropy (K) of the material, a material with higher K should exhibit a smaller ΔE effect. Although 
it was shown that the Young’s modulus in a demagnetized state depends on the stress, the effect of 
stress was not incorporated in the definition of Young’s modulus as this effect was negligible for the 
alloys used in the experiments back then. Unlike earlier work [1] where the ΔE effect was defined at 
different constant stresses (σ), Lee [6] defined the ΔE effect as (ES – Ea) in the limit of σ → 0 and 
stated based on this definition that the ΔE effect should be always positive irrespective of the sign of 
magnetostriction. A later work [7] used an inter

ion of stress in iron-germanium alloys. 
With the discovery of rare-earth-iron compounds which exhibited giant magnetostriction, a 

normalized ΔE effect given by the expression (ES – Ea)/Ea, was used [8] to show around 90 % change 
in modulus in TbFe2 between its demagnetized and saturated states  which was significantly higher 
than that of iron (0.4 %) and nickel (6-18 %) [9]. These studies used acoustic as well as static 
stress-strain measurement and reported 17 % difference in the hard modulus measured by these two 
techniques. The discrepancy between the two measurement techniques was attributed to domain 
reorientation even at 7 MHz. In spite of this reported discrepancy, acoustic measurements were 
further used [10] to show 144 % ΔE effect in Terfenol-D where the soft modulus was estimated from 
low resonance frequency and the hard modulus was estimated from high resonance frequency at 
demagnetized and magnetized conditions respectively. A different work [9] reported 161 % ΔE effect 



in Terfenol-D using acoustic measurement. The nature of measurement in this work prevented the 
analysis of the effect of stress. Furthermore, it was shown that the Young’s modulus monotonically 
increased as a function of the applied magnetic field. From earlier discussion and from the work of 
Honda [1], we know that the modulus at magnetic saturation (ES) should be a constant. Evidence of a 
monotonically increasing modulus with increasing magnetic field is indicative of the challenges in 
using these measurement techniques to determine the saturation modulus in materials such as 
Terfenol-D, with magnetic easy axes aligned along [111] instead of the direction of the applied field 
(i.e. [11

 a 
magnet

13-15] to vary in 
rare-ea

different operating regimes as shown 
earlier 

2]). 
The variation of Young’s modulus with applied magnetic field was reported [11] for Metglas 

using dynamic measurement. It was shown in this work that the Young’s modulus initially decreases 
with increasing magnetic field till it reaches a minimum at some non-zero magnetic field beyond 
which it increases with increasing magnetic field. Neither the effect of stress nor the effect of high 
magnetic field which should help in the observation of ES was discussed. Nevertheless, this work [11] 
confirmed that the largest change in modulus is not observed between demagnetized and saturated 
conditions. A later work [12] measured the Young’s modulus of Terfenol-D as a function of stress at 
different applied magnetic fields using static stress-strain measurement under compressive loads. It 
was shown [12] that for any given applied magnetic field, the Young’s modulus initially decreases 
with increasing compressive stress till it reaches a minimum at some non-zero stress beyond which it 
increases with increasing compressive stress until the material is saturated. Trends in variation of 
Young’s modulus observed by Anderson [11] in Metglas for varying magnetic field and by Savage 
[12] in Terfenol-D for varying stress were similar indicating the lowest Young’s modulus in

ostrictive material is obtained at non-zero operating stress and magnetic field conditions.  
Another quantity of interest studied by several researchers [13-15] is the Young’s modulus at 

constant magnetic induction (EB). This quantity can be measured from the stress-strain curve of a 
material provided the magnetic induction is kept constant throughout the stress cycle by 
appropriately adjusting the magnetic field. For all non-zero magnetic fields, ES and EB are equal to 
each other (and are constant in value) only beyond saturation. If a stress is applied in the absence of a 
magnetic field, then the magnetic moments could rotate while maintaining a zero magnetic induction, 
producing a non-zero magnetoelastic strain and hence ES and EB are not equal unless all moments are 
aligned antiparallelly. As expected from the theory, both EH and EB were shown [

rth compounds based on the stress and magnetization states of the material. 
Kim et al. [16] showed experimental variation in Young’s modulus as a function of magnetic 

field at different stress levels and also as a function of tensile stress at different applied magnetic 
fields in amorphous magnetostrictive ribbons. A one dimensional energy-based model [16] using the 
internal stress distribution theory [7] showed good correlation with the experimental modulus. 
Kellogg and Flatau [2, 17] showed the effect of magnetic field on Young’s modulus of Terfenol-D at 
different pre-stresses using dynamic measurement [2] and the effect of stress on Young’s modulus of 
Terfenol-D at different bias magnetic fields using quasi-static stress-strain measurement [17]. In 
order to get useful information for design of tunable mechanical resonators in which the ΔE effect 
was used to selectively, electrically adjust resonance of the device [2, 17], the term ΔEH2H1 = 
(EH2-EH1)/EH2 was introduced to describe the change in Young’s modulus about a given operating 
stress as the applied magnetic field changed from H1 to H2. Interestingly, this definition introduced a 
possibility of having positive and negative value of ΔEH2H1 at 

by Honda [1], unlike the ΔE effect defined by Lee [6]. 
The earliest measurement of magnetic field-dependent stiffness constants c44 and c′ [= 

(c11-c12)/2] in iron-gallium (Galfenol) alloys was reported by Petculescu et al. [18] using resonance 
ultrasound spectroscopy. They measured Δc′ and Δc44 of both water quenched and furnace cooled 
single crystal Galfenol with 12-33.3 atomic % gallium under zero and 15 kOe (1193 kA/m) of applied 
magnetic fields. Kellogg et al. [19] and Atulasimha et al. [20] studied the effect of varying 
compressive stress at constant current to a solenoid surrounding a sample and constant magnetic 
fields on the Young’s modulus of water quenched and furnace cooled Fe81Ga19 respectively. 
Atulasimha et al. [20] also showed that variation of stress can change the permeability in the 



magnetostrictive material and hence estimates of EH based on use of a constant current for producing 
a magnetic field can be significantly different from the desired modulus for a constant applied 
magnet

 
value can vary based on the sample history as there is no unique demagnetized state for a material. 

 

ic field, EH. 
The ability to quantify the relative magnitude of variability in elastic modulus in a form that 

can readily be used for device design, e.g. in tunable resonators and for real-time impedance 
matching, motivates the introduction of the “bounded ΔE” function given in Eq. (2), ΔE(σ,H), which 
limits variability of modulus to extreme values of between 0 and 100 %. In this equation, the change 
in modulus between saturation and an operating condition defined by the stress and magnetic field, is 
normalized with respect to the constant saturation modulus instead of a variable soft modulus (instead 
of with respect to the stress and field dependent soft modulus). As a result, the ΔE(σ,H) will always 
be positive and will have lower and upper bounds of 0 and 100 % corresponding to the perfectly 
saturated state [E (σ, H) = ES] of the material and a perfectly dissociated state [E (σ, H) = 0] of the 
material respectively. It was deemed useful to avoid the use of the demagnetized modulus (Ea) as its
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g’s modulus as a continuous function of stress and magnetic 
eld in the magnetostrictive material. 

. MAGNETOMECHANICAL CHARACTERIZATION 
 

e cooled” state 
and all

 shows the block diagram of the feedback control system which was used to obtain the desired field. 
 

This paper presents experimental values of Young’s modulus of single crystal iron-gallium 
(Galfenol) alloys having 16 and 19 atomic percent gallium which were measured as a function of 
stress and magnetic field. A feedback controller was used in the experiment to maintain constant 
internal magnetic field in the samples. It is also shown that an energy-based non-linear constitutive 
model can be used to predict the Youn
fi
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This section describes the quasi-static stress-strain characterization performed on the 
Fe84Ga16 and Fe81Ga19 rod-shaped samples under different constant bias magnetic fields. The 
samples were prepared at Materials Preparation Center, Ames [21]. The Fe84Ga16 sample was 25-mm 
long and 6.25-mm in diameter and the Fe81Ga19 sample was 29.21-mm long and 6.21-mm in 
diameter. Both the samples used in this study can be considered to be in the “furnac

 measurements were made along the [100] crystallographic direction of the samples. 
An in-house built transducer [19] was used to characterize the sample. The 

magnetomechanical characterization involved measurement of the strain of the sample under 
quasi-static compressive stress that varied from zero to 120 MPa and back to zero at a linear ramp rate 
of 2 MPa/s while the sample was subjected to different DC bias magnetic fields from 0 to 71 kA/m. 
The compressive stress cycle was applied using a hydraulic MTS 810 universal testing machine in 
feedback force-control mode. The compressive force was measured using a load cell. The strain in the 
sample was measured by two resistive strain gages attached in a quarter bridge configuration on 
diametrically opposite sides of the rod at mid-length to counter the effect of any bending moment. A 
linear Hall-effect sensor placed parallel to the sample measured the magnetic field. A feedback 
controller [22] was used to measure the response from the Hall-effect sensor and adjust the current in 
the drive coil to maintain a constant magnetic bias field in the sample throughout the stress cycle. Fig. 
1



 
Figure 1. Block diagram of feedback controller system used to maintain a constant magnetic field in the sample during 

a quasi-static stress cycle. 
 

The test sequence comprised of demagnetizing the sample followed by applying the DC bias 
magnetic field and cycling the stress. The demagnetization sequence lasted over 167 cycles using a 1 
Hz sinusoidal field which underwent a 5 % geometric decay every 1.5 cycles from an initial 
amplitude of 97 kA/m. The data was collected using a computer-controlled system at 50 scans per 
second.  
 
 
 
3. MAGNETOMECHANICAL MODEL 
 

This section describes an energy-based non-linear magnetomechanical model which was used 
to obtain the magnetoelastic strain as a function of stress and magnetic field.  This approach was 
originally used by Armstrong to model the magnetostriction in Terfenol-D [23] and was later adapted 
to both model the actuator and predict the sensor responses of single crystal and polycrystalline 
Galfenol subjected to axial stress [24]. In the current work, this modeling approach is used to predict 
the magnetoelastic strain of a single crystal rod along its [100] longitudinal axis. The model uses the 
saturation magnetization (Ms), the magnetostrictive constant (λ100) and the 4th and 6th order 
magnetocrystalline anisotropy constants (K1 and K2 ) to calculate the Zeeman, stress-induced 
anisotropy and magnetocrystalline anisotropy energies per unit volume due to a magnetic field (H) 
and stress (σ) applied along the [100] direction as shown in Eqs. (3), (4) and (5) respectively. 
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The total energy (ETOT) of the system corresponding to different orientations of the local 
magnetization vectors can be expressed in terms of their direction cosines (α1, α2, α3) as shown in Eq. 
(6). The direction cosines can be expressed in terms of the azimuthal angle (φ) and the polar angle (θ) 
such that 1 sin cos   , 2 sin sin    and 3 cos  . The empirical parameter (γσ) was used to 
accommodate the need for a linear correction to the contribution of the stress-induced anisotropy 
energy to improve the model fit of experimental data [25]. The total energy in this model is 
formulated with stress induced anisotropy energy and appears to omit the magnetoelastic, elastic, and 
mechanical work energies, however, recent work [26] shows the equivalence of these terms. 

Assuming the sample is comprised of a large number of equivalent magnetization units, each 
of them is likely to have a particular orientation of magnetization with a probability that depends on 
the energy corresponding to that orientation. The defocusing of the local magnetization about the 
average magnetization direction is modeled [23] by assuming that the probability of the 
magnetization vector orienting along a particular direction is proportional to the inverse exponential 
of the energy (ETOT) divided by an empirical factor Ω that accounts for the local fluctuations. Since 
magnetostriction also depends on the orientation of the magnetization vector, the same hypothesis 



can be extended to calculate magnetostriction along [100] using Eq. (7). The total strain can be 
calculated using Eq. (1). 
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The model parameters used for the two different samples in this work are shown in Table 1. 

Model parameters such as magnetostrictive constant (λ100) and saturation Young’s modulus (ES) 
were obtained from the experiment described in section 2. The method for obtaining other model 
parameters such as Ms, K1, K2, γσ and Ω is described in other works [27, 28]. A detailed study of the 
effect of the model parameters on the model prediction can be found in Atulasimha et al. [25]. An 
optimum value of Δφ = Δθ = 5o was used for all cases to get converged solutions within reasonable 
computation time. 
 

Table 1. Model parameters used in energy-based model. 

Parameters Ms [kA/m] λ100 [με] K1 [kJ/m3] K2 [kJ/m3] γσ Ω [J/m3] ES [GPa] 

Fe84Ga16 1456 165 13 -90 0.875 600 76 

Fe81Ga19 1321 212 17.5 0 0.9 707 59 

 
 
 
4. RESULTS AND DISCUSSION 
 

This section shows the strain-stress relationship in Fe84Ga16 and Fe81Ga19 under different 
constant magnetic fields. For all cases discussed in this work, the stress and magnetic field were 
applied along the [100] crystallographic direction of the sample and the corresponding strain was 
measured or predicted with the model along the same direction. The Young’s modulus was obtained 
as a function of stress and magnetic field from measured values of the stress-strain gradient for a 
given constant magnetic field as well as from predictions obtained by using the energy-based model. 
The common trends as well as differences exhibited by the two samples are discussed with respect to 
the different energy terms introduced in Eqs. (3) – (5). 
 

  
Figure 2. Energy-based  model prediction (black dashed lines) and experimental (colored lines) strain (ε) vs. 

compressive stress (σ) at DC bias magnetic fields (H) of 0-71.2 kA/m for (a) Fe84Ga16 and (b) Fe81Ga19. 

(b) (a) 

 
Fig. 2 shows the strain in Fe84Ga16 and Fe81Ga19 as a function of the quasi-static compressive 



stress at different constant magnetic fields in the samples. At zero bias field and zero stress, no strain 
is observed in the samples. On increasing the compressive stress from zero, a non-linear elastic 
region is observed, which corresponds to additional magnetoelastic strain due to magnetic moment 
rotation, superimposed on the elastic strain. Beyond a critical compressive stress (~ 20 MPa), which 
is required to overcome the magnetocrystalline anisotropy, all the magnetic moments align along the 
equilibrium [010] or [001] direction and hence a linear ε-σ curve is observed. It should be noted that 
the magnetocrystalline anisotropy in Galfenol alloys with 16 and 19 atomic % gallium favors the 
alignment of the magnetic moments along the six equivalent <100> crystallographic directions in the 
absence of any external stress and magnetic field. 

On application of a bias field, the samples exhibit magnetoelastic strain even at zero stress due 
to the magnetic moment rotation from [010] or [001] to [100] produced by the magnetic field. On 
increasing the compressive stress from zero, a linear ε-σ curve is seen until the stress-induced 
anisotropy overcomes the Zeeman and magnetocrystalline anisotropy energies and the magnetic 
moments start to rotate away from [100]. The magnetic moment rotation is exhibited by a non-linear 
region in the ε-σ curve, which becomes linear once again at high stresses when all the magnetic 
moments have rotated to either of the two [100] directions. The higher the bias field, the higher is the 
energy barrier that has to be overcome by the compressive stress in order to rotate the magnetic 
moments and hence the non-linearity in the ε-σ curves gets shifted towards higher compressive 
stresses at higher bias fields. The stress range used for the experiment was not sufficient to overcome 
the Zeeman energy due to 71 kA/m and hence the magnetic moments in the sample remain aligned 
along [100] throughout the stress cycle at this bias field. 

The model predictions obtained using the energy-based approach are superimposed on the 
experimental results in Fig. 2. The Young’s modulus was calculated from the experimental ε-σ curves 
using a moving average scheme. This method reduced the large error that can arise if numerical 
differentiation is performed on experimental data which is not smooth. A window of 4 MPa (~ 30 
data points) was chosen and a straight line was fitted to all the data points lying inside this window. 
The inverse of the slope of the line gave the Young’s modulus at the mean value of the stress range of 
that window. The window was moved across the entire range of data to obtain the Young’s modulus 
as a function of stress at different DC bias magnetic fields. 

In order to obtain the Young’s modulus as a continuous function of stress and magnetic field, 
the energy-based model was used to generate ε-σ curves for compressive stresses ranging from -150 
to 50 MPa at an interval of 1 MPa and magnetic fields ranging from 0 to 100 kA/m at an interval of 
0.1 kA/m. The first derivative of these curves obtained by numerical differentiation as shown in Eq. 
(8) gave the Young’s modulus as a function of magnetic field and stress in the sample. 
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Figure 3. Energy-based model prediction (lines) and experimental (markers) Young’s modulus (E) vs. compressive 

stress (σ) at DC bias magnetic fields (H) of 0, 7.3 and 17.8 kA/m for (a) Fe84Ga16 and (b) Fe81Ga19. 

(a) (b)



 
Fig. 3 shows that the model predictions capture the trend in the Young’s modulus with 

varying stress and magnetic field quite well. However the model appears to over-predict or 
under-predict the modulus in certain regions. Error between the experimentally obtained values and 
model predictions can be traced back to the fact that the model provides a good fit of the ε-σ curves on 
an average sense and not at all points on these curves. Any small deviation of the model from the 
experimental curves would be amplified during the numerical differentiation required to obtain the 
material properties. Furthermore, the use of the moving average scheme to estimate the modulus and 
choosing a window of 4 MPa in this scheme does not eliminate errors associated with inaccuracies in 
the energy model but rather contributes to reducing noise estimate that arises due to numerical 
differentiation. 
 

  
Figure 4. Energy-based model prediction of Young’s modulus (E) vs. stress (σ) at magnetic fields (H) of 0-70 kA/m for 
(a) Fe84Ga16 and (b) Fe81Ga19. For both the samples, no ΔE effect was observed for H = 70 kA/m in this stress range. 

(a) (b) 

 
Fig. 4 shows the model simulation of Young’s modulus as a function of compressive and 

tensile stresses at different constant magnetic fields. If the bias field is kept constant and a 
compressive stress is applied, the Young’s modulus initially decreases due to additional 
magnetoelastic strain produced by magnetic moment rotation till it reaches a minimum value. With 
further increase in the compressive stress, E increases and asymptotes to a value corresponding to the 
saturation Young’s modulus (ES) and a state in which the magnetic moments are oriented close to 
[010] or [001]. Application of a tensile stress at a constant magnetic field, helps align magnetic 
moments along the [100] direction. Hence even a small tensile stress rapidly increases the Young’s 
modulus to its saturation value and a state with magnetic moments aligned along the [100] direction. 
Also, it should be noted that the ΔE effect can be observed at any magnetic field provided the 
compressive stress applied is high enough to overcome the Zeeman and magnetocrystalline 
anisotropy energies. 
 

  
Figure 5. Energy-based model prediction of Young’s modulus (E) vs. magnetic field (H) at pre-stresses (σ) of +20 to 
-70 MPa for (a) Fe84Ga16 and (b) Fe81Ga19. For both the samples, no ΔE effect is nearly zero for a tensile stress of 20 

MPa. 

(a) (b) 

 



 
Fig. 5 shows the model simulation of Young’s modulus as a function of magnetic field at 

different constant tensile and compressive stresses. Under constant value of compressive stresses, 
increasing the magnetic field will cause the modulus to decrease until it reaches a minimum value. 
The large drop in modulus occurs once the Zeeman energy introduced by the applied field is high 
enough to overcome the stress-induced and magnetocrystalline anisotropy energies. Once the 
minimum value is reached, further increases in the magnetic field cause the modulus to increase until 
it reaches the saturation value (ES) at a magnetic field which is high enough to align all the magnetic 
moments along [100]. If the stress is tensile, increasing the magnetic field helps align the magnetic 
moments along [100] and therefore the modulus increases till it reaches ES. It should be noted that the 
ΔE effect cannot be observed at any magnetic field if the initial tensile stress applied is high enough 
to saturate the material, as shown in Fig. 5 for the case of 20 MPa tensile stress. In a sample which has 
been saturated by applying a high enough tensile pre-stress, an increasing magnetic field simply flips 
the magnetic moments from 100][  to [100] as soon as the field is sufficient to overcome the 
magnetocrystalline anisotropy. Such a 180o rotation of magnetic moments does not contribute to ΔE 
effect as explained in details later. 

An important feature that needs to be discussed is the trend in the magnitude of the minima in 
modulus when either stress or magnetic field is kept constant while the other is varied. Both Figs. 4 
and 5 show that the lowest possible modulus is obtained at small values of magnetic field and small 
values of compressive stress. Fig. 4 shows that as the bias magnetic field is increased, not only do the 
minima in modulus occur at higher compressive stresses but also the magnitude of the minimum 
modulus decreases with increasing bias field. Fig. 5 shows that as the pre-stress changes from tensile 
to compressive, definite minima in modulus start to appear. As the compressive pre-stress is 
increased, not only do the minima in modulus occur at higher magnetic fields but also the magnitude 
of the minimum modulus decreases with increasing compressive pre-stress. 

An explanation of this trend can be given using the energy plots shown in Fig. 6. The variation 
in Young’s modulus depends on the volume fraction of magnetic moments available which can 
undergo non-180o rotation. Hence the extent of variation in Young’s modulus depends on the bias 
magnetic field and/or pre-stress, both of which influence both the volume fraction of magnetic 
moments which are available for non-180o rotation and the energy barrier that needs to be overcome 
by the stress-induced anisotropy or Zeeman energy respectively in order to rotate the magnetic 
moments from the direction of one energy minima to another. The volume fraction of magnetic 
moments residing in an energy well is proportional to the depth of the energy well. The minima in 
modulus denote the operating condition such that a small perturbation in either the magnetic field or 
stress results in the rotation of maximum volume fraction of magnetic moments. Such a condition 
requires availability of shallow energy wells at non-180o intervals which correspond to low stresses 
and magnetic fields as represented in Fig. 6(a). If the stress-induced anisotropy is significantly higher 
than the Zeeman energy then there is no possibility of non-180o rotation as there are only two energy 
wells separated by a 180o interval as denoted by σ = ±50 MPa curves in Fig. 6(a).  The saturation 
modulus is obtained under such conditions. Conversely, if the Zeeman energy is significantly higher 
than the stress-induced anisotropy, there cannot be any non-180o rotation as energy wells occur at 0o 
and 180o, as for the 50 MPa tensile stress case in Fig. 6(b) or only at 0o, as for all other cases in Fig. 
6(b). The saturation modulus can also be obtained under all of the conditions shown in Fig. 6(b). In 
general, the higher the bias magnetic field or pre-stress, the lower the volume fraction of magnetic 
moments that are available for non-180o rotation and hence the smaller the minima in Young’s 
modulus. 

 



  
Figure 6. Arbitrary total energy (ETOT) vs. azimuthal angle (φ) of magnetization direction at constant magnetic fields of 
(a) 1 kA/m and (b) 20 kA/m for stresses ranging from -50 to 50 MPa. The energy map is plotted at a polar angle (θ) of 

90o, i.e. in the azimuthal plane. 

(a) (b) 

 
In both samples, the lowest possible modulus, E(,H)min was observed at small compressive 

stresses (0 < < 20 MPa) and low magnetic fields (0 < H < 5 kA/m). The maximum ΔE(σ,H) 
experimentally observed in Fe84Ga16 and Fe81Ga19 were 54 % and 63 % respectively. The model 
prediction estimated the maximum ΔE(σ,H) in Fe84Ga16 and Fe81Ga19 as 58 % and 63 % respectively. 
The model prediction of the value of maximum ΔE(σ,H) as well as the operating point where it is 
observed agree well with the experimental results. The significant results are summarized in Table 2. 
 

Table 2. Summary of variable Young’s modulus in Fe84Ga16 and Fe81Ga19. 

Sample Es 

[GPa] 

Ea 

[GPa] 

Normalized ΔE effect (%) 

ΔE = (ES – Ea)/Ea [8] 

Minimum E(σ,H) 

[GPa] 

ΔE(σ,H)max (%) 

ΔE(σ,H)max = (ES – E(σ,H)min)/ES 

Fe84Ga16 76 44 73 32 58 

Fe81Ga19 59 24 146 22 63 
 

Although the general trend in the variation of E with respect to σ and H are same in both the 
samples, specific differences at any given operating point can be observed due to the difference in 
material properties between the two compositions. For example, at H = 20 kA/m and σ = -150 MPa, 
the Young’s modulus in Fe84Ga16 does not reach ES while the same in Fe81Ga19 almost reaches ES. 
This is due to the fact that Fe84Ga16 has a higher Ms and lower λ100 than Fe81Ga19 and hence for a 
given combination of stress and magnetic field, the relative difference between the stress induced 
anisotropy and Zeeman energies is more in Fe84Ga16 than in Fe81Ga19. This also translates to the fact 
that for a given bias field, a higher compressive stress is required to saturate Fe84Ga16 than Fe81Ga19. 
 
 
 
5. CONCLUSIONS 
 

The effect of stress and magnetic field on Young’s modulus in magnetostrictive single crystal 
Fe84Ga16 and Fe81Ga19 was investigated using experimental stress-strain characterization under 
different constant magnetic fields. A feedback control loop was employed to maintain constant 
magnetic field during the entire stress cycle used for the characterization to ensure accurate 
estimation of Young’s modulus. An energy-based non-linear constitutive magnetomechanical model 
was used to predict the Young’s modulus as a continuous function of stress and magnetic field. 

Most existing work on the ΔE effect uses a value obtained between zero and saturating 
magnetic fields and as stress tends to zero. The results of this work showed that for both the 
compositions, the minimum value of Young’s modulus was observed for compressive stresses lower 
than 20 MPa and below magnetic field of 5 kA/m but not at H = 0 and σ → 0. A survey of literature on 



the ΔE effect in magnetostrictive materials was performed and a new parameter, the bounded 
ΔE(σ,H), was introduced to include the effect of both stress and magnetic field. The normalization of 
the change in modulus in the new parameter ΔE(σ,H) was done with respect to the Young’s modulus 
at magnetic saturation so as to provide 100 and 0 as upper and lower bounds, respectively, 
irrespective of the material being studied. Both experimental study and model prediction suggested 
ΔE(σ,H) as high as 60 % in magnetostrictive single crystal Galfenol. It was shown that the change in 
modulus can be produced by varying both magnetic field and stress in a magnetostrictive material 
and hence they can be used in design of smart material applications such as tunable resonators, active 
vibration control devices, acoustic wave guides and mechanical or magnetic field sensors. 
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