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ABSTRACT

This paper deals with the reduction of structural vibrations by means of switch shunting tech-
niques on piezoelectric elements. The main advantage of these techniques compared to resonant
(inductive) shunts is that they are self-adapting on a wide band of frequencies, while requiring little
energy to perform. A modal expansion of a general electromechanical system is proposed. Then,
different simulations are made with 1dof. and N dof. models,in order to assess the performance
and how the non-linearities of the system can affect it. These results are compared to experimental
tests.
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1 INTRODUCTION
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Figure 1. Structure with piezoelectric elements coupled to electriccircuits to reduce the vibration.

This paper deals with the reduction of structural vibrations by means of switch techniques on
piezoelectric elements. In these techniques, the piezoelectric elements are left in an open-circuit
condition most of the time, with an electrical impedance briefly connected to the electrodes at spe-
cific instants [9]. This allows a temporary storage of the electric energy in the piezoelectric, which
acts on the structure as a force opposed to its motion, thus reducing the vibrations. The main ad-
vantage of these techniques over resonant (RL) shunts is that they are self-adapting on a wide band
of frequencies, while requiring little energy to let the current flow. This energy can even be taken
from the piezoelectric element itself, making the system autonomous. Several teams [9, 3, 8, 7, 2]
are working on the subject with slightly different approaches, however the basic principle remain
the same. The two basic problems are the coupling of the piezoelectric element with the structure
motion, and the timing of the switch.

The first part of this study is dedicated to recalling the mainsteps of the system electromechan-
ical modeling, including the elastic structure, the piezoelectric patches and the electric circuit. A



modal approach is used, since it is general and can be appliedto any structure, provided its modal
properties are known, either by an analytical approach, or by a finite-element modeling or even
with an experimental modal analysis.

The second part of the study focuses on the quantification of the added damping, and the prob-
lems arising when the switch timing strategy has to deal witha large frequency band structural
motion. Results from previous studies [5] show that if the structure’s behavior is reduced to one
mode, the efficiency depends only on the electromechanical coupling factor for this mode. How-
ever, experimental results show that the switching process, non-linear in essence, transfers energy
between modes and excite high frequency modes when damping others.

The third part addresses this problem with several simulations carried out on a multi degree of
freedom (dof.) system. By analyzing the results, some insights on the energy transfers are given,
along with general optimization guidelines, proposed for both the piezoelectric elements and the
timing of the switch.

An experimental validation of these results is proposed with an experimental setup combining
different structures with an autonomous switch circuit or with a controlled switched shunt where a
real-time computer controls the switch timing taking various parameters into account.

2 GENERAL ELECTROMECHANICAL FORMULATION

Previous (and incoming) studies [6, 5, 4] show that the modalexpansion on the short circuit
modes of the coupled electromechanical problem of a structure with a piezoelectric element is an
efficient way to obtain an accurate reduced order model. It naturally introduces modal electrome-
chanical coefficients, that are the key of the vibration reduction efficiency. This modal reduction
to N modes also helps in understanding the physics of the system.Such a reduced problem writes
in the following dimensionless form:

w(x, t) =

N∑

r=1

Φr(x)qr(t), (1)






q̈r + 2ξrωrq̇r + ω2
rqr + ωrkr

N∑

i=1

ωikiqi − ωrkrQ = Fr, mechanical modes

Q −

N∑

r=1

krωrqr = V, electric circuit

(2a)

(2b)

whereΦr(x), ωr, ξr, kr andFr denote respectively the mode shape, angular frequency, themechan-
ical damping factor, the modal coupling coefficient and the modal forcing of ther-th mode in short
circuit. The coupling coefficientkr is both representative of the direct and indirect piezoelectric
effect.

Equation (2b) can take the following forms, depending on theelectric circuits shown on Fig. (1):

τeQ̇ + Q −

N∑

r=1

ωrkrqr = 0 R shunt (3a)

1

ω2
e

Q̈ +
2ξe

ωe

Q̇ + Q −

N∑

k=1

ωkkrqr = 0 RL shunt (3b)

Q̇ = 0 open circuit (3c)



In the case of a resistive shunt (R-shunt, the electric circuit is a resistance only, Eq. (3a)),τe is the
(dimensionless) time constant of the circuit, proportional to the resistance; in the case of a resonant
shunt (RL-shunt, the association with an inductance and resistance, Eq. (3b)),ωe is the (dimen-
sionless) angular frequency of the circuit, related to the inductance, andξe is the damping factor
of the circuit, related to the resistance. For the case of switch shunting, the electrical conditions
are alternatively switched between open circuit (Eq. (3c))conditions and (i) R-shunt (Eq. (3a)) for
SSDS and (ii) RL-shunt (Eq. (3a)) for SSDI. The switch times are synchronized to the structure
oscillations, as explained in section 3.

In [6, 5], an electromechanical model of a beam with symmetric piezoelectric elements vi-
brating in flexion is proposed, and the modal basis of the short-circuit modes is obtained semi-
analytically. This allows the computation of all the parameters and particularly an analytical ex-
pression is obtained forkr; in [6] this factor is shown to be theonly parameter determining the
performance of R and RL-shunts. In [5] the same factor was found to be determining the perfor-
mance of SSDI and SSDS shunts. As a consequence, maximizing the modal coupling coefficients
kr is the key point to optimize vibration reduction. Differentmethods can be used to compute it :

• For some cases, essentially when the system geometry is simple, an analytical or semi-
analytical model can be written [6];

• in [4], a finite element formulation of a structure with piezoelectric elements is proposed to
compute all the modal parameters and coupling factors in a general case;

• finally, an experimental modal analysis of the system can be performed and the coupling
coefficients can be approximated by the difference between the frequencies of a mode with
the piezoelectric element in short circuitωSC or in open circuitωOC [1, 4]:

|kr| ≃ keff =

√
ω2

oc − ω2
sc

ω2
sc

. (4)

It is worth remarking however thatkr has a sign, which relates to the relationship between
the direction of the motion of a mode and its influence on the piezoelectric voltage, while
keff, being the ratio of electromechanical energy on potential energy is always positive [1].

3 SYNCHRONIZED SWITCH DAMPING : A 1 DOF MODEL

This section presents the results of [5]. First, the principle of Synchronized Switch Damping
on Inductor (SSDI) is presented, then its performance is evaluated in simple cases where the me-
chanical system is reduced to 1 dof. A beam with two piezoelectric patches is used only as a test
example.

The free and forced response of a system connected to a SSDI electric circuit and around the
r-th resonance is investigated. Eqs. (2a) arereduced to a one dof systemby keeping ther-th mode
only. One obtains the following equations, whereu(t) ≡ qr(t) denotes the only remaining modal
coordinate, and the effect of the electrical charge is written like an external force in the mechanical
equation’s second member:

Mechanical part: ü + ξrωru̇ + ω̂2
ru = krωrQ + F, (5a)

Open circuit Q̇ = 0, (5b)

Closed circuit
1

ω2
e

Q̈ +
2ξe

ωe

Q̇ + Q − krωru = 0. (5c)

The idea behind the SSDI technique is to use the effect of the charge to reduce the beam
motion. Most of the time, the switch remains open, no currentflows (Q̇ = 0 , Eq. (5b)) and the
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ūn

QSSDI
n

(a)

QSSDI
n−1

(d)(c)

(b)

Tetn

Figure 2. Beam with SSDI shunt ; time evolution of displacementu(t) (a) and free electric chargeQ(t) (c) with zoom
on one mechanical evolution step (b) and one electrical evolution step (d)

charge has an effect similar to a constant force. In order to reduce the vibrations, this force must
be kept opposed to the structure’s velocity. It is only when the velocity changes direction that the
switch is closed and the current flows ; this instant can be found by monitoring the piezo voltage
V = Q − krωru and switching wheṅV = −krωru̇ = 0. The switch remains closed for a brief
time, Te, very small compared to the mechanical period of the structure. This time is precisely
chosen as half a period of the association of the piezoelectric element and shunt,Te = π/ωe. After
that time, the charge should have an opposite sign and the switch is opened again. The effect of the
charge is then similar to a constant force that changes of sign synchronously with the oscillations
and that opposes itself to the motion, almost like a dry damper.

A different technique, called SSDS for Synchronized SwitchDamping on Short, consists in the
same system with a short circuit shunt. The timing of the switches and the behaviour of the system
is similar, except the voltage is set to zero during the switch and the charge is lower.

3.1 Free response model
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Figure 3. Time evolution of displacementu(t) (solid line) and chargeQ (dotted) with SSDI, for three values ofξe.
(left): low ξe and beating phenomenon ; (center): optimalξe improves decay rate ; (right) highξe decreases decay
rate.

The first model is developed for the free reponse of the system(Fr = 0) , without damping
(ξr = 0), and with the assumption that the electrical phenomena (the changes of charge during
the closed circuit phase) are infinitely quick compared to the mechanical phenomena (ωe ≪ ωr).
In that case, the time evolution ofu(t) can be written analitically and bounded by a decaying
exponential, whose decay rate depends only onkr andξe. The case of SSDS can be treated exactly
like the case of SSDI withξe = 1.

In the case of SSDI, an optimal value forξe, that maximizes the decay rate, is obtained as a
function of kr, shown on figure (4)). Then, an analytical expression of the equivalent damping
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Figure 4. Optimal value of electrical damping factor (resistance) for SSDI as a function of coupling (left), and
equivalent damping obtained on the structure with SSDS or SSDI (right)

factorξeq = µ/ωr (defined with decay rateµ) is obtained [5]:

ξSSDS
eq = −

1

π
ln

(
1 − k2

r

1 + k2
r

)
, ξSSDI

eq = −

1

π
ln

(
1 − |kr|

1 + |kr|

)
. (6)

The above value ofξSSDI
eq , in the case of SSDI, is obtained for the optimal value ofξe. The main

result is that the optimal value ofξe and the resulting performance depends only onkr, exactly like
in the case of linear shunts [6].

3.2 Forced response model
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Figure 5. Time evolution of mechanical displacementu(t) with SSDI and phase spaces, forkr = 0.2 andξr = 0.1%.
System forced near resonance. (left): overcritical damping ξe; (center) optimal dampingξe; (right) large dampingξe.

A second model is developed with the same assumption of quickelectrical phenomena„ in the
case of an applied external harmonic forceFr(t) = cos(Ωt) and a mechanical dampingξr 6= 0. It
allows us to compare the motion amplitude at resonance with and without switch. A semi analytical
and fast way to computeu(t) allows a systematic study of parameters. This study shows that a
critical value of the electrical damping exists (differentof the optimalξe previously found) which
separates the behaviour of the system between a “steady state” response and a highly irregular and
inefficient timing of the switches (fig. 5).

As the reponse of the system is not harmonic, the RMS amplitude of displacement integrated
over time is used as a performance indicator ; this amplitudeis plotted versus the excitation fre-
quency and the effect of the switch can be presented as an attenuation brought by the system (fig.
6,left). The optimal value ofξe, that maximizes this attenuation, and the resulting performance
depends only onkr and onξr, exactly like in the case of linear shunts [6].
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3.3 Conclusions with 1 dof. model

The conclusions of this study are very straightforward. With the models proposed, the opti-
mization of a SSD system can be made as follows :

• First, the coupling coefficientkr must be maximized, by choosing the correct piezoelectric
elements and placing them at selected places on the structure ;

• In the case of SSDS the performance depends only onkr

• In the case of SSDI, the inductance related toωe just has to be small, in order for the electrical
system to be fast compared to the mechanical part. This is a welcome difference with rhe
case of linear RL shunt where L is very high and must be tuned. Then, the resistance can
be chosen so thatξe is optimal, depending onkr. The expected performance is very high
(Fig. (6), right).

4 A N-DOF SYSTEM WITH SSDI

While experimentation with R and RL shunts showed a good agreement between 1 dof. models
and experimental data, the highly non-linear behaviour of synchronized switch systems is repon-
sible of the excitation of various modes, and the switch timing becomes very complicated. The
efficiency can be considerably lower than expected. This is why the study of N dof. systems is
necessary.

4.1 Modelling

First, Eqs. (2a,3) are written in the following matrix form :

{
Mocq̈oc + Cocq̇oc + Kocqoc = χQ + Foc and Q̇ = 0 open circuit

Mccq̈cc + Cccq̇cc + Kccqcc = Fcc closed circuit

(7a)

(7b)

Eq. (7a) is aN dof. system whereMoc, Coc andKoc are respectively the mass, damping stiffness
matrix in open circuit;qoc = (q1 . . . qN)⊤ is the vector of modal coordinates,χ = (ω1k1 . . . ωNkN)⊤

is the vector of electromechanical coupling factors andFoc = (F1 . . . FN)⊤ is the vector of exter-
nal forcing.Moc is theN × N identity matrix,Coc is a diagonal matrix whoseie diagonal term is
2ξiωi andKoc is the diagonal short-circuit stiffness matrix with the symmetric open circuit added
stiffness whose(i, j) term isω2

i δij + kikjωiωj.



Eq. (7b) is aN +1 dof. system that includes the electrical equation. The vector of unknowns is
qcc = (q⊤

oc Q)
⊤

, the external forcing isFcc = (F⊤

oc 0)
⊤

and the mass, damping and stiffness matrix
in closed circuit write:

Mcc =

(
Moc 0

0⊤ 1/ω2
e

)
;Ccc =

(
Coc 0

0⊤ 2ξe/ωe

)
;Kcc =

(
Koc −χ

−χ
⊤ 1

)
. (8)

The time evolution of the system is then computed by switching alternatively between Eq. (7a) and
Eq. (7b) at specific instants introduced in the following section.

4.2 Switch timing

In the case of a one dof. model, it has been shown that switching when the mode velocity
changes sign was efficient and that the voltage can be monitored to find this instant (section 3).
In the case of a multimode system, one can study the mechanical and electrical power during the
system evolution. The following power equations are obtained, by multipling Eq. (7a) byqoc

⊤ and
Eq. (7b) byqcc

⊤:

d
dt
Em =

d
dt

(Tm + Vm) = −Dm + Cm + Pext, (9a)

d
dt
Ee =

d
dt

(Te + Ve) = −De + Ce, (9b)

where

Tm =
1

2
q̇⊤

ocMocq̇oc, Te =
1

2ω2
e

Q̇2, Vm =
1

2
q⊤

ocKocqoc, Ve =
1

2
Q2 (10)

Dm = q̇⊤

ocCocq̇oc, De =
2ξe

ωe

Q̇2, Cm = Qq̇⊤

ocχ, Ce = Q̇qoc
⊤

χ, Pext = q̇⊤

ocFoc. (11)

Tm is the kinetic energy,Te is the inductance energy,Vm andVe are the potential mechanical and
electrical (capacitance) energies;Em andEe are the total mechanical and electrical energies;Dm

is the dissipated mechanical power,De is the electrical power dissipated by Joule effect in the
resistance;Cm andCe are electromechanical coupling powers andPext is the power of the external
mechanical forces.

In Eq. (9a), the effect of the electric circuit on the mechanical part appears with termCm,
that is the power of the electric charge during the mechanical motion q̇oc. In order to reduce the
vibrations,Cm should be kept negative. During the (predominant) open circuit phase,Q is constant
and following Eq. (2b),V̇ = −q̇⊤

ocχ so thatCm = −QV̇ . Finally, the productQV̇ should be kept
positive.

By changing the sign ofQ wheneverV̇ reaches zero, one expects to keepCm < 0. Also,
instead of waitingTe for opening the switch, one can wait the full inversion of thecharge by
detectingQ̇ = 01. The switch condition then writes :

{
switch closes when V̇ = 0

switch opens when Q̇ = 0
, (12)

as proposed in [3] for multimode control.

1Also, physical implementations of switches make use of diodes which limit the flow of current in one direction,
effectively blocking the current when it changes direction



5 FREE RESPONSE OF A N-DOF SYSTEM WITH SSDI

The case of a free-response is studied with Eqs (7) withFoc = 0. Given the initial conditions,
the open circuit evolution is computed, taking into accountthe fact that it can be obtained from
Eqs (7) as a matrix product including a matrix exponential. The zero-crossing oḟV is numerically
found and the closed circuit evolution begins then, with initial conditions obtained by continuity
of the modal coordinates, velocities and electrical charge. WhenQ̇ = 0, the open circuit evolution
begins again.

5.1 Influence of neighboring modes

A simulation is made with two modes of dimensionless angularfrequenciesω1 = 1 andω2 =
1.3, no mechanical damping and coupling coefficientsk1 = k2 = 0.1. The electrical shunt used
has a high angular frequencyωe = 20 and an electrical damping of0.1, theorically optimal from
the 1 dof model (Fig. 4). The initial condition is a non-zero displacement of mode 1 only ; the
results are plotted on figure 7. The total energy isE = Em + Ee, as defined by Eq. (9a). Mode 1
and 2 modal potential energies areV1 andV2, defined byVi = 1/2 ω̂2

i q
2
i , with ω̂2

i = ω2
i (1 + k2

i ).
One hasVm ≃

∑
Vi, by noting that the stiffness matrix is almost diagonal.
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Figure 7. Evolution of displacement, charge and energies

The second mode is excited by the switching process, even with the initial condition only on
mode 1. However, the energy is quickly decaying, with an exponential decay ; this decay can be
used to compute an equivalent added damping :

E ≃ E0e
−2µt; µ = ω1ξeq

A second simulation is made withω2 = 3 and the results are shown on figure 8. This time, the
second mode is much more excited, and the switching is then perturbed ; it occurs too frequently,
there is no charge buildup in the circuit. The energy decay rate is lower.
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In order to study the influence of neighboring modes, the samesimulation is repeated with
several ratios of the modes angular frequenciesω2/ω1. For each simulation, an equivalent damping
is deduced from the decay rate of the total energy and the result is plotted on figure 9.
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Figure 9. Equivalent damping of the first mode as a function of the ratioof frequenciesω2/ω1

The following conclusions can be made :

• The damping is not affected by lower frequency modes, and is almost identical to the 1 dof
model prediction ;

• the damping is low when the two modes are close to each other infrequency (ω2 ≃ ω1).
What happens is that they begin to oscillate in phase opposition, a motion which is not well
coupled with the electric circuit ;

• the efficiency is lower when the upper mode has a frequency which is a multiple of the
damped mode ; this is especially true for odd multiples. Thisis due to the fact that the upper
mode is excited by the repetitive shock effect of the charge,a signal with a roughly square
shape, mainly composed of odd harmonic components (Fig. 2).Mode 2 motion disturbs the
damping of the first mode by desynchronizing the switch with the first mode ;

• finally, high frequency modes have an impact on the performance.

5.2 Influence of inductance

As the excitation of high frequency modes can decrease efficiency (and experimentally generate
annoying noises), it may be interesting to use a higher inductance, increasingTe and "softening"
the shocks in the structure. First, the efficiency on a 1 dof. system2 with various inductances is
tested and the equivalent damping plotted versusωe on Fig. 10. It shows that the performance is
correct forωe > 3ω1. Below that value, the switch is too slow to accumulate enough charge.

Then the same simulation is made, with a 2 dof model with second mode atω2 = 7.5. The
results (fig. 10) show that :

• for 3 < ωe < ω2 the performance is satisfactory, mode 2 is only slightly disturbed ;

• whenωe ≃ ω2 mode 2 is excited and the performance is very low ;

• whenωe > ω2 mode 2 is less excited, but still affects performance.

One can remark that one of the main goals of switch techniquesis to use a passive inductor instead
of a synthetic (semi-passive) inductor required for big values ofTe ; hence high inductances are
not really an alternative.

2This computation requires a 1+1 dof. model to take the electrical period into account
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6 FORCED RESPONSE OF A N-DOF SYSTEM WITH SSDI

We now analyze the response of the system when an external force is applied. The system
evolution is simulated with a Newmark algorithm to integrate Eqs. (7) withFoc 6= 0.

To avoid the detrimental high frequency switching (like in the case of Fig. 8), the switch closing
condition is now:

circuit closes when V̇f = 0 (13)

whereV̇f denotes an alternative derivated voltage signal, which canbe:

• V (t) filtered by a lowpass filter, which is representative of the synchronisation method found
in certain switching systems [9];

• V (t) filtered by a modal filter, which allows the user to target specific modes and weight
their influence on the vibration reduction [3];

• the voltage of another piezoelectric element used as a sensor only and designed to couple
specifically to targeted modes [8].

6.1 Experimental setup

The experimental setup is built around a cantilevered beam with piezoelectric elements. The
beam is excited near the tip by a glued magnet, in the field of a coil, which exerts a force propor-
tional to the current. The velocity is measured at the driving point by a laser velocimeter. Both
contactless devices avoid electrical grounding of the beam. Two circuits have been used: (i) an
autonomous SSDI shunt provided by LGEF Lyon[9] or (ii) a switch with exchangeable shunts
controlled by a real-time computer running Mathworks xPC target, in order to implement quickly
various filters and switching strategies, based on piezoelectric voltage or other sensor data. The
data acquisition can be in time domain or in frequency domainwith averaging. A sweep test per-
formed on a beam with optimized coupling ( highk1, k2 andk3) shows a strong cross excitation
of the second mode at the first resonance (fig. 11). Those experimental results are compared to a
simulation, showing good agreement.

6.2 Selective coupling

Experimentation reveals (fig. 12) that when the beam is excited at first resonance, the switch-
ing excites the second mode and is partially desynchronized. In order to test the influence of that



Figure 11. Time/frequency diagram of beam tip velocity with sweep around first resonance
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Figure 12. Spectrums for excitation at resonance of two beams with different coupling optimization

phenomenon, a second beam is built with an optimized highk1 and lowk2. Aditionally a piezo-
electric sensor for controlling the switch timing is available, withk2 ≃ 0. The results show a better
performance, especially in terms of stable synchronization of the switch.

6.3 Influence of inductance

The use of a high passive inductance to completely avoid the excitation of upper modes is
impractical for most of the piezoelectric elements (which have a low capacity). However, the
choice of the inductor allows experimentally (fig. 13) to reduce the excitation of high frequency
modes (> 5 kHz), responsible of the annoying noise emission when a low frequency mode is
attenuated.

7 CONCLUSION

Several simulations were carried out on SSDI systems, with different assumptions. Simple
models allow to draw general conclusions : the performance depends on the modal coupling coef-
ficientkr for a given mode. However, the complexity of the switch timing problem arises as soon
as a N dof. model is used. The efficiency quickly degrades but measures can be taken :

• by optimizing the piezoelectric element, one can avoid coupling with the modes which are
not of interest and degrade the performance ;
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Figure 13. Spectrums for excitation at resonance with different inductors

• by choosing the inductance, one can avoid the high frequencyswithing noise, and maybe in
some cases reduce some cross-excitation of modes ;

• finally, the most important and difficult problem in switch shunting is the timing of the
switch. The careful filtering of the piezoelectric voltage allows good experimental results,
but complex filters are difficult to passively implement. Preliminary research indicates that
some simple criteria based on voltage and charge in the piezoelectric element may help to
optimize the vibration reduction ; however, the physical implementation may prove difficult.
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