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ABSTRACT   

 

The Integral Resonant Control (IRC) is a simple low-order control scheme that has been 

introduced as a high-performance controller design methodology for flexible structures with 

collocated actuator-sensor pairs. It is capable of achieving significant damping, over several modes, 

while guaranteeing closed-loop stability of the system in presence of unmodelled out-of-bandwidth 

dynamics. These reasons make the IRC an ideal controller for various industrial damping 

applications, if packaged in a simple easy-to-implement electronic module. In this work, we propose 

an analog implementation of the IRC scheme using a single Op-Amp circuit. The goal is to 

demonstrate that with a simple analog realization of the modified IRC scheme, it is possible to damp 

a large number of vibration modes. A brief discussion about the modeling, circuit considerations, 

implementation and experimental results is presented in order to validate the usefulness and 

practicality of the proposed analog IRC implementation. 
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1. INTRODUCTION   

 

A variety of industrial, scientific and defense applications employ flexible structures [1, 2, 3, 

4]. These structures are prone to unwanted vibrations. Thus, vibration control of flexible structures 

has been an active research field, see [5, 6, 7]. An interesting property of the smart structures with 

collocated sensor-actuator pairs is that the phase of their frequency response lies continuously 

between 0º and 180º. Various vibration damping techniques exploiting this property have been 

proposed by researchers in the past. Velocity feedback achieves damping by using this property to 

implement a very simple derivative controller [8]. In practive however, implementation of this 

controller results in relatively low performance and poor phase margins. Resonant control is another 

approach that has been applied successfully to collocated highly resonant systems [9, 10, 11]. As its 

response does not roll-off at higher frequencies, this control technique may not be suitable in certain 

applications. To alleviate this problem, positive position feedback (PPF) has been proposed and 

experimentally demonstrated [12, 13]. The main drawback of control techniques such as PPF and 

resonant control is that they produce a second-order controller to damp a single resonant mode of the 

structure, thus resulting in a high-order controller for damping multiple modes. Also, they may be 

difficult to tune for cases where more than one mode is to be controlled. An easyto-tune, low-order 

damping controller, that imparts adequate damping to multiple modes, without instability issues due 

to unmodeled system dynamics, was the main motivation for proposing the Integral Resonant Control 



 

 

(IRC) approach in [14]. 

The IRC is a highly effective, yet a very straightforward control design methodology. The 

implementation reported in [14] utilizes a real-time DSP system to implement a controller with a 

simple structure. In this work, we demonstrate the analog implementation of the IRC scheme using a 

single operational amplifier circuit. It is shown that this analog circuit delivers the expected damping 

performance over multiple resonant modes and is robust to unmodeled high-frequency dynamics of 

the structure. The analog circuit implementation of the IRC scheme presented and tested in this paper, 

has the potential to be utilized in various industry based damping applications, owing to its good 

damping performance, simplicity of design, and ease of tuning and inexpensive nature. 

 

1-1. Preliminaries 

 

Collocated flexible structures have the pole-zero interlacing property. Therefore, the phase of 

their transfer function lies between 0º and 180º ([15, 16]). The IRC scheme takes advantage of this 

property in order to damp multiple vibration modes with a simple, low-order controller. Transfer 

function of a collocated system can be represented as the sum of many second-order blocks, i.e. 
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All manuscripts where αi > 0 and ∀i and M→∞ [17]. For all practical purposes, a truncated 

model with a constant additive feed-through term is used. This approach captures the system 

dynamics within the bandwidth of interest with sufficient accuracy and accounts for the effect of 

high-frequency modes on low frequency zeros of the system [18]. This truncated model can be written 

as, 
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where D is the additive feed-through term and N is the number of in-bandwidth modes. The 

implementation of the IRC is presented in the next section. Experimental results are included Section 

in 3. Finally, in Section 4 the main conclusions are listed. 

 

2. IMPLEMENTATION 

 

A cantilever beam, similar to the one in reference [14], is used to test the analog 

implementation of IRC (see Fig 1). The control scheme proposed in [14] is shown in Fig 2(a). The 

feed-through term (Df < 0), which is a negative real number, places a pair of low-frequency complex 

conjugate zeros between the origin and the first pair of complex conjugate poles of the system (Gyu). 

Thus, the system can be controlled with an integrator in positive feedback (K < 0), since the phase of 

(K/s)Gyu is kept between −90º and 90º. This approach deems the system sensitive to low frequency 

disturbances such as D.C. offsets. In this work, we present an equivalent control scheme that 

alleviates this problem; see Fig 2(b). The resulting equivalent controller can be written as: 
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Note that as K and Df are negative numbers and the equivalent control scheme is a lossy 

integrator with positive feedback. Then, the controller can be realized with the single operational 

amplifier circuit illustrated in Fig 3. That is, C(s) can be parameterised as: 
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Figure 1. Experimental platform, where u is the input and y is the output of the collocated patch, w is the 

disturbance patch and z is the tip velocity 

 

Figure 2. (a) Control scheme proposed in [14], where Df is the feed-through term and K is the integral term. (b) 

Equivalent representation of the IRC scheme where Df and K are grouped into a lossy integrator 

where R1, R2 and C are the elements of the lossy integrator circuit [19]. As the DC loop gain is 

negative, the phase of C(s)Gyu(s) starts from 180º. In addition, the phase of Gyu lies between 0º and 

180º and the phase of C(s) is between 0º and 90º. Then, the system of Fig 2(b) is stable if and only if 

the DC loop gain is less than 1 [20]. The controller parameters are tuned in a stepwise fashion 

described as follows (For a detailed discussion and analysis of this scheme, the reader is referred to 

[14]): 

• Choose the value of the capacitance C and the resistance R2 to agree with the bandwidth 

constraints obtained from the root locus plot. 

• Tune the gain of the controller with the resistance R1. 

• Cancel the output offset of the controller with the resistance R3, where R3 = R2||R1. 

 

 

3. RESULTS 

 

Transfer functions Gzw(s), Gzu(s), Gyw(s) and Gyu(s) were obtained using a Polytec scanning 

laser vibrometer (PSV-300). The idea is to design and wrap a controller around Gyu(s) and impart 

damping to Gzw(s). This is possible since both the transfer functions have identical poles. Using a 

subspace-based system identification technique, an accurate model of the experimental system was 

obtained [21]. This transfer function captures the system dynamics within the bandwidth of interest, 

with sufficient accuracy and can be written as: 
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Figure 3. Analog circuit implementing the modified IRC scheme. Vi is the input and Vo is the output of the 

controller, C is the capacitance and R1, R2 and R3 are the resistances used for tuning the controller 

 
Figure 4. Magnitude (dB) and phase (deg) response of the measured (- -) and modelled system (—) of Gyu 

The frequency response functions (FRF) of the measured and modelled system of Gyu(s) are 

plotted in Fig 4. Note that Eq. 5 describes the dynamics of the collocated system (of the form given in 

Eq. 2) augmented with the dynamics of the sensor given by: 
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For an analog implementation, it is necessary to fully understand the various circuit 

parameters and their effects on the overall system. Fig 5 shows the equivalent electrical model of the 

analog controller and the pair of collocated piezoelectric transducers. 

The K and Df parameters for the equivalent controller C(s) implemented in this work can be 

obtained using the methodology discussed in [14]. The sensor dynamics must be taken into account in 

order to implement the modified IRC scheme presented here. To explain the difference between the 

design of the modified control scheme with and without the sensor dynamics, the root locus plots for 

C(s)Gyu(s) for both cases are shown in Fig 6. Neglecting the sensor dynamics, the controller 

bandwidth governed by pC has no adverse effect on the closed-loop stability of the system; see Fig 

6(a). However, when the sensor dynamics are taken into account, as in Fig 6(b), pC can makes the 

system unstable. Then, the bandwidth of the controller is increased (by placing the pole pC further 

away from the jω axis). In this case, the damping performance increases up to some extent. Any 

increase in the controller bandwidth beyond this point results in system instability. On the other hand,  
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Figure 5. Electrical model of the analog controller and the pair of collocated piezoelectric transducers. Here, Cp 

and Rp are the capacitance and the resistance of the piezoelectric sensor. At the sensor side, the circuit can be 

modelled by a resistor Ri 

 
Figure 6. Root locus plots of the system without (a) and with (b) the sensor dynamics, where the poles and zeros of 

the model given by Eq. (2) are (p1, · · · , pi) and (z1, · · · , zi) respectively. The pole of the controller is (pC) while (pL) 

and (zL) are the pole and zero of the sensor dynamics 

reducing the bandwidth of the controller (by placing the pole pC closer to the jω axis) results in poor 

damping performance. Thus, there is a tradeoff between the maximum damping that can be imparted 

to the system and the controller bandwidth. The Bode plot of the system C(s)Gyu(s) with DfK = 226.2 

and 1/Df = −18, is plotted in Fig 7. It can be seen that the phase of C(s)Gyu(s) does not start from 180º, 

and the gain margin depends on the bandwidth of the controller. Thus, as the bandwidth of the 

controller increases, the gain margin decreases and vice versa.  

The controller was implemented with a general purpose operational amplifier, MC33078. 

Based on the tuning criterion explained earlier, a 3.3nF ceramic capacitor was chosen to obtain the 

necessary bandwidth constraint. The resistance R2 was realized and tuned using a 2MΩ potentiometer 

while R1 and R3 were implemented using 100KΩ potentiometers. After tuning the controller, its 

measured 3dB cut-off bandwidth was found to be 36Hz and the D.C. gain was 18. 

Fig 8 shows the experimental open-loop and closed-loop responses of Gzw. Fig 9(a) shows the 

FRF of Gzw in open and closed-loop for the first nine vibration modes. Although the controller is 

designed based on a model with only three vibration modes, it achieves attenuation at higher freque- 

jω 

pC 

p1 

z1 

p2 

z2 

p1 

z1 

p2 

z2 

σ 
pL zL 

jω 

pC 

p1 

z1 

p2 

z2 

p1 

z1 

p2 

z2 

σ 

(a) (b) 

Vp 

Cp 

Rp + Ri 

Vp 

Cp 

+ 

Vi Rp + 

+ 

Vo 

Controller  
input  

Sensor  
patch 

Actuator  
patch 

Controller  
output 

Flexible beam 



 

 

 

Figure 7. Bode diagram of −C(s)Gyu(s) where DfK = 226.2 and 1/Df = −18 

 

Figure 8. Measured open-loop (- -) and closed-loop (—) FRF of Gzw for the first three vibration modes 

cy modes as well. In Table 1, the obtained attenuations for the first nine vibration modes are shown. 

Fig 9(b) shows the step response of Gyw for undamped and damped cases. We can observe that with 

our implemented analog IRC scheme, a damping of 26 dB is achieved at the first mode and the higher 

modes also show significant damping. 

Table 1. Damping for the first nine modes of the cantilever beam 

Mode number 1 2 3 4 5 6 7 8 9 

Frequency [Hz] 8.4 51 141 276 463 687 972 1300 1663 

Atenuation [dB] 26.2 15.2 9.2 4.5 7.4 0.9 2 2 2 

 

4. CONCLUSION 

 

A successful analog implementation of the IRC scheme was carried out and tested. This 

implementation was shown to be a simple single op-amp circuit that performed as per simulated 

predictions. A damping of up to 26 dB was achieved for the first mode. Higher frequency modes were 

also damped to various degrees. It is clear from these results that the IRC scheme has great potential in 

many industrial applications pertaining to vibration damping of collocated smart structures. 

 



 

 

 

Figure 8. (a) Measured open-loop (- -) and closed-loop (—) FRF of Gzw for the first nine vibration mode. (b) 

Experimental open-loop (- -) and closed-loop(—) step responses of Gzw for a 20 V step input 
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