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ABSTRACT 

 
An important parameter in piezoelectric transducer design is to maximize the strength of a 

specific resonance when a voltage is applied across the electrodes. In this work, it is proposed a new 
approach to design piezoelectric transducer based on the maximization of the excitation strength of 
user-defined modes. Here, the piezoelectric transducer is designed based on Functionally Graded 
Material (FGM) concept (named Functionally Graded Piezoelectric Transducers (FGPT)). FGM are 
composite advanced materials, which are made by changing gradually the properties with position 
inside material domain. In this work, Topology Optimization Method (TOM) is applied to find the 
optimal gradation function that maximizes the excitation strength of desirable modes. The 
Piezoelectric Modal Constant (PMC) is considered to quantify the excitation strength of a specific 
mode. The main goal is to maximize a specified PMC of a specific FGPT mode by finding the optimal 
material distribution subjected to a given volume constraint. In addition, the FGPT is required to 
oscillate in a thickness extensional mode (aiming acoustic wave generation applications); thus, to 
track the desirable mode a mode-tracking method based on the Modal Assurance Criterion (MAC) is 
applied. The optimization algorithm is constructed based on Sequential Linear Programming (SLP), 
and the concept of the Continuum Approximation of Material Distribution (CAMD) is considered. To 
illustrate the method, two-dimensional FGPT are designed considering plane strain assumption. The 
result shows the advantage of using FGM concept and TOM to design piezoelectric transducers. The 
desired PMC is increased more than 60%. In addition, the target mode is achieved by using an 
accurate mode-tracking strategy. 
 
Keywords: Piezoelectric Transducers, FGM, Topology Optimization Method, Piezoelectric Modal 
Constant, Mode-Tracking. 
 
 
 
1. INTRODUCTION 

 
Piezoelectric materials are multifunctional materials; they have the property to convert 

electrical energy (electric field and electric potential) into mechanical energy (stress and strain) and 
vice-versa. Nowadays, a new concept has been applied to design piezoelectric transducer: 
Functionally Graded Material (FGM) concept. In this work, these piezoelectric transducers are 
named Functionally Graded Piezoelectric Transducers (FGPT). FGM posses continuous graded 
properties with gradual change in microstructure [1]. In piezoelectric transducer design the FGM 
concept can be applied for improving their performance: as reduction of stress concentration [2], 
increasing bonding strength and fatigue-lifetime [3]. In addition, the FGM concept allows designing 
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of piezoelectric transducers with smaller time waveform (large bandwidth) [4], which is desired in 
medical imaging and non-destructive testing (NDT) applications. Basically, in FGPT all its 
properties (dielectric, elastic and piezoelectric constants) or some of them vary along a specific 
direction, as shown in Fig.1, usually along its thickness, based on several gradation functions.  
 

Non-FGPT by using 
TOM

FGPT Optimal property 
gradation law

Non-FGPT by using 
TOM

FGPT Optimal property 
gradation law  

 
Figure 1. Functionally Graded Piezoelectric Transducer principle.  

 
 FGPT design can be divided, mainly, into analytical and finite element approaches. Analytical 
issues mainly deals with applications of analytical techniques which, usually, grade a unique material 
property of the FGPT, for instance, the elastic constant c11 [5]; or the piezoelectric constant d31 [6].  
Other papers elucidating analytical modeling of free and forced vibrations are the works of Yang and 
Xiang [7] and Zhong and Yu [8]. These analytical approaches are limited to simulate 
two-dimensional piezoelectric structures and to simulate the FGPT behavior when two or more 
material properties are graded. On the contrary, by using finite element approaches, 2D and/or 3D 
FGPT considering several gradation functions at one or more properties can be designed; however, 
these numerical approaches are based on multilayer design, where for each lamina of multilayer 
piezoceramic the material properties are uniform, smoothly changing among layers [9]. Moreover, 
the multilayer approach is not accurate enough for calculating stresses and dynamic behavior, since 
the stress concentration among layers is increased, and the result is depended of layer number 
utilized. In order to reduce that trouble, the material gradation is treated based on Graded Finite 
Element (GFE) concept [10], which incorporates the material property gradient at the size scale of the 
finite element, resulting in smooth and accurate change of properties among GFE. Nowadays, a novel 
approach has been utilized: design of FGPT based on Topology Optimization Method (TOM) [11], 
but considering only static analysis. That quasi-static design does not involve several important 
problems that arise in dynamic operations; specifically, it does not deal with eigenmode switching 
during the optimization process; non-smooth objective functions; and discontinuous sensitivities of 
the objective function   

In view of above ideas, this research proposes a new, generic and systematic Topology 
Optimization formulation to find the optimum material gradation of FGPT, see Fig. 1, in order to 
modify the dynamic characteristics of FGPT and to achieve the following goals: to maximize the 
excitation strength of selective vibration mode shapes and, to design FGPT with desired mode 
shapes. Tracking a desirable eigenmode is particularly useful in acoustic wave generation 
applications, since the FGPT is required to oscillate in thickness extensional mode or piston-like 
mode [12]. To achieve these goals, a MATLAB code is implemented, which includes mode-tracking 
method for tracking the target eigenmode; specifically, the Modal Assurance Criterion (MAC) is 
applied [13]. To treat the material gradation, the Graded Finite Element (GFE) formulation is 
implemented [10]. The optimization algorithm is constructed based on Sequential Linear 
Programming (SLP), and the concept of the Continuum Approximation of Material Distribution 
(CAMD) is considered [14] for modelling a continuous distribution of material along the design 
domain instead of the traditional piecewise material distribution applied by traditional topology 
optimization formulation [15]. In addition, to achieve an explicit gradient control, design variable 
projection [16] is implemented. 
 



2. FINITE ELEMENT MODELING OF FGPT 
 
The well-known matrix formulation of the equilibrium equations for a piezoelectric medium is 
formulated, without structural damping, as [17]:    
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where U is the nodal displacement vector;  ϕ   is the nodal electric potential vector; F and Q are the 
nodal mechanical force and electric charge vectors, respectively. Muu, Kuu, Kuϕ, and Kϕϕ are 
respectively the mass, elastic, piezoelectric and dielectric “stiffness” matrices. However, when a 
FGPT is considered, the properties change continuously inside the piezoelectric domain, which 
means that the matrices of eq. (1) must be described by some continuous function of Cartesian 
position (x, y) into a bi-dimensional FGPT. Hence, the matrices of Eq. (1) are expressed as: 
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where, Nu are the shape functions for the displacements; and BBu and BϕB   are the strain-displacement 
and voltage-gradient matrices, respectively. CE, e, and εS respectively represent the elastic, 
piezoelectric, and dielectric material constants. According to the theory of conventional finite 
element, the matrices and vectors of piezoelectric constitutive equations result from assembling the 
vectors and matrices of the single elements [17].  

In modal analysis, the eigenvalues and eigenmodes are found solving the second-order 
systems: 
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where, λ and  are respectively the eigenvalue and natural frequency, and ω { } { T
u ϕΨΨΨ ,= } represents 

the eigemode vector.     
 

2-1. Piezoelectric Modal Constant (PMC)  
 

The Piezoelectric Modal Constant (PMC) determines, for a specific vibrating mode, how 
strong the couple is between the mode and the excitation; in other words, the PMC determines the 
relative importance of a specific vibrating mode [12]. Accordingly, if it wants to increase the 
contribution of a specific mode, its PMC must be increased. The piezoelectric modal constant  
depends on eigenmode 

krA

krΨ of mode k, and it is formulated as [12]: 
 

2
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where  is the equivalent nodal force vector that converts the applied voltage on electrodes to a 
mechanical force at each finite element node. The equivalent nodal vector is given by [12]: 
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where  is a vector with length equal to the number of nodes on the electrode with varying potential 

(ungrounded electrode), and where the matrix 
pI

[ ]Tu KK
pip ϕϕϕ results to transform the Eq. (3) into a 

FE equation where the nodes are condensed out in electroded nodes and non-electroded nodes. Thus, 
for a TPGF exited by a voltage applied between a grounded electrode on its bottom surface and an 
ungrounded electrode on its top surface, the subscripts i and p denote respectively the electrical 
potential degree freedom of the non-electroded nodes and ungrounded electroded nodes. and 

are corresponding coupling stiffness matrices.  
pϕuK

piϕϕK
 
 

3. TOM FORMULATION FOR DESIGNING FGPT  
 

The objective function consists to maximize the PMC (Ar) of a specified mode or set of 
modes. As mentioned in section 2, the PMC is important since it evaluates how strong the excitation 
of a specific mode is in the transducer response. That objective function is given by: 
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where and wkrA k are respectively the PMC and weight coefficients for mode k (k = 1, 2,…, m), m is 
the number of modes considered in the multi-objective function, and n is a given power. 

The optimization problem is formulated as to find the material gradation of FGPT which 
maximizes the multi-objective function F subjected to piezoelectric volume constraint. That 
constraint is implemented to control the amount of piezoelectric material into the design domain, Ω. 
Hence, the optimization problem is given as: 
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where ρΤΟΜ(x, y) is the design variable (pseudo-density) at Cartesian coordinates x and y. Ωs 
describes the amount of material type 1, see Eq.(5), at bi-dimensional domain Ω.  The second 
requirement (mode shape tracking) is achieved by using the Modal Assurance Criterion (MAC) [13], 
which is widely used to compare experimental modal analysis with theoretical one. Since FGPR can 
be constructed by sintering a layer-structured ceramic green body without using adhesive material, 
the optimization problem is arranged as a like-layer optimization problem; in other words, the design 
variables are considered equals at each interfacial layer. This like-layer makes the FGPR 
manufacturing possible. However, the like-layer optimization implies that the finite element mesh 
must be homogeneous. 

The adopted material model is based on a simple extension of the traditional SIMP model 
[15]: 
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where EH denotes the mixture material properties. The tensor Ei is related to the stiffness or 
piezoelectric or dielectric properties for material type i (i = 1, 2). ρΤΟΜ = 1.0 denotes material 
properties type 1, and ρΤΟΜ = 0.0 denotes material properties type 2, both at Cartesian coordinates x 
and y. Material type 1 and type2 depict the fundamental material properties to be “mixed”. 

 
 

4. NUMERICAL IMPLEMENTATION   
 
4-1. Continuous gradation of material properties and design variables 
 

To treat the gradation in FGPT, the material property is continuously interpolated inside each 
finite element based on property values at each finite element node. This approach is named Graded 
Finite Element (GFE) formulation [10]. In this research, the piezoelectric GFE employs the same 
shape functions N to interpolate the unknown nodal displacements and electrical potentials, spatial 
coordinates, and the material constants. Thus, the elastic, CE, piezoelectric, e, and dielectric, εS, 
material constants, in Eq.(2), are respectively given by: 
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where m is the number of nodes per finite element.  

On the other hand, the Continuum Approximation of Material Distribution (CAMD) concept 
[14] is used to continuously represent the material distribution. CAMD considers that the design 
variables inside of the finite element are interpolated by using, for instance, the FE shape functions, 
N. Thus, the pseudo-density at each graded finite element e can be expressed as: e
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where  and Nn

TOM i
ρ i are respectively the nodal design variable and shape function for node i (i = 

1,…nd), and nd is the number of nodes at each GFE. This formulation allows to have a continuous 
distribution of material along the design domain instead of the traditional piecewise material 
distribution applied by previous formulation of topology optimization [15]. 

Finally, a new scheme to achieve an explicitly gradient control is implemented by introducing 
a layer of nodal variables on top of the existing nodal variables [16]. The variables in the new layer 
are used as design variables, which are update by the iterative optimization process. The projection 
technique employs a function to relate the nodal design variable  to the nodal material 
density . That projection function is defined as: 
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where is the nodal design variable assumed to be located at node i; is the material density n
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located at node j; and Si  is the set of nodes j in the sub-domain under influence of node i. In other 
words, the sub-domain Si corresponds to a circle with its center located at the node i and user-defined 
radius equal to rmin. xi and xj represent the Cartesian coordinate of node i and j, respectively. Lastly, W 
represents a weight function [16].  
 
4-2. Modal Assurance Criterion (MAC) 
 

The Modal Assurance Criterion (MAC) is implemented to track the desirable mode shape 
[18]. In topology optimization, MAC was initially implemented to maximize eigenvalues associated 
with specified target modes of non-piezoelectric structures [13]. In this work, MAC is utilized to 
compare the user-defined or target eigenmode shape, Ψref, with the current eigenmode shape, Ψc, 
obtained from topology optimization process. MAC is defined as [13,18]: 
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The value of MAC is a scalar quantity that varies between 0.0 and 1.0. When the MAC value 

is equal to 1.0, the vectors Ψref and Ψc represent exactly the same eigenmode shape. However, it is 
difficult to provide precise values that the MAC should take in order to guarantee good results. In this 
work, it is accepted that a MAC value in excess of 0.9 represents highly correlated modes and a MAC 
value of less than 0.05 represents uncorrelated modes [18].     
 
4-3. Optimization procedure 
 

Figure 2 shows a flow chart of the optimization algorithm. Initially, the initial domain is 
discretized by graded finite elements and the design variables are defined at each node. The initial 
guess for design variables is chosen to be the same as the initial guess for material density at 
nodes . The proposed formulation is implemented by using MATLAB™ code. 

n
TOMρ

p
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It is used the Q4/Q4 graded finite element, which represents a two-dimensional four-node 
quadrilateral GFE. Each node has three degrees of freedom: two mechanics (horizontal and vertical 
displacements), and one electric (electrical potential). Besides each node has a design variable. A 
fully isoparametric formulation is implemented in the sense that the same bilinear shape functions are 
applied to interpolate the unknown displacements and electric potentials, the geometry, and the 
material properties. In this work, the mathematical programming method (PLS) is applied to solve the 
linear programming [19]. It consists of the sequential solution of approximation linear sub-problems 
that can be defined by writing a Taylor series expansion for the non-linear optimization problem; see 
Eq.(7), around the current design point at each iteration step. This linearization requires the 
sensitivities (gradients) of the objective function and constrains in relation to  and , see 
Appendix. 

n
TOMρ
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When the eigenmode tracking is selected, the objective eigenvectors are calculated first, and 
then the sensitivity analysis is carried on those selected eigenvectors. Accordingly, the MAC values 
are calculated by comparing (see Eq.(12)) the user-defined target mode shape with those obtained by 
solving the eigenproblem of Eq.(3), at each iteration. Then, the eigenvectors having the MAC value 
closest to 1 are selected as the objective mode shapes. When the current shapes substantially change 
during the optimization process, the reference mode shape may be updated.  

In addition, at each iteration, moving limits are defined for the design variables . 
Typically, during the iterative process, the design variables will be allowed change by 5–15% of the 
original values. After linear optimization, a new set of design variables  and material 
density are obtained and updated in the design domain until convergence is achieved for the 

n
TOMρ

n
TOMρ
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objective function. The procedure has converged when the changes in design variables from iteration 
to iteration are below then 10-3. The final material distribution is found by projecting the design 
variables onto material densities layer. The finite element analysis used to obtain the response fields 
(electrical potentials and displacements) is based only on this projected material distribution.  
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Figure 2. Flow chart of the optimization procedure. 
 

 
5. RESULTS 
 

To illustrate the proposed method, two-dimensional FGPR are designed considering plane 
strain assumption. The design domain used is shown in Fig.3(a). The design domain is specified as a 
20 mm by 5 mm rectangle with two fixed support at the end of the left and right-hand side. The idea is 
simultaneously to distribute two types of materials into design domain. The material type 1 is 
represented for a PZT-5A piezoelectric ceramic and the material type 2 is a piezoelectric material 
PZT-5H. Initially, the design domain contains only PZT-5A material and material gradation along 
thickness direction is assumed. A mesh of 50 x 30 finite elements is adopted (31 layers along 
thickness direction), which always represent 11 and 27 nodes per wavelength on thickness and 
longitudinal directions.  
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Figure 3. (a) Design domain for FGPR design. (b) Initial mode shape (dashed and solid line respectively depict 
non-deformed and deformed structure). 
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Figure 4. Final material distribution function and final mode shapes found when objective function F3 is maximized and 
several rmin in equation (11). 

 
In the first example, the PMC of a user-defined vibration mode shape is maximized. The 

reference thickness extensional mode (target mode) to be tracking along iterative optimization 
process is shown in Fig. 3(b) (deformed and non-deformed structure); in other word, the PMC of the 
piston-like mode (mode number 23) must be maximized.  
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Figure 5. (a) PMC convergence history. (b) First eighty normalized PMCs. 
 

Figure 4 shows the final material distribution law (to maximize the PMC when the FGPT 
vibrates in the thickness extensional mode (piston-like mode)) and the vibration mode shapes when 
several rmin in Eq. (12) are used; specifically, Fig. 4 depicts the gradation functions when 
non-projection technique and projection technique with rmin equal to 1.1; 1.8; 2.5 are utilized. 
According to rmin is incremented smother gradation functions are obtained, since the sub-domain Si is 
incremented. On the other hand, Fig. 4 shows that in all simulated cases the obtained mode shape is 
highly correlated with initial mode shape (see Fig. 3(b)), and the final material distribution of the 
FGPT represents a piezoelectric transducer with only PZT-5A properties, but with PZT-5H property 
regions on the top and bottom surfaces. The result shows the advantage of using FGM concept and 
TOM to design piezoelectric transducers with maximized PMC. Particularly, when an rmin equal to 
1.8 is used, the material distribution found increases the desirable PMC by 65.0%, from 2.299 x 104 to 
3.794 x 104 (see Fig. 5(a)). In other words, the strength of the like-piston mode is increased by 65.0% 
when a voltage is applied across the electrodes of the FGPT, in relation to initial non-FGPT (with 
only PZT-5A properties). Figure 5(b) confirms that result. Figure 5(b) shows the PMC of first eighty 



modes (including elastic and piezoelectric modes) of the topology optimized FGPT. The PMC of the 
desirable piston-like mode (mode number 23) is highest of all; thus, the optimized PMC is 880.2% 
and 440.7% higher than modes number 18 and 26 (adjacent modes), respectively. That dynamical 
behavior represents a uni-modal FGPT.  
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Figure 6. (a) Final mode shape. (b) Final material distribution function. 
 

In the second example is designed a TPGF with multi-modal behavior keeping the piston-like 
mode of Fig. 3(b); thus, the PMC of the reference thickness extensional mode is maximized initial 
mode number 23) together with the left and right adjacent piezoelectric modes (mode 19 and 25, 
respectively). Hence, three terms at multi-objective function of Eq. (6) are utilized (m = 3). The other 
data are equal to example one. 
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Figure 7. First fifty normalized PMCs for (a) non-FGPT and (b) topology optimized FGPT. 
 
 Figure 6(a) shows the final topology after optimization process for m = 2. This mode is a 
thickness extensional mode close to piston-like mode; thus, the final mode shape is very close to the 
initial and desirable one (see Fig. 3(b)). On the other hand, Fig. 6(b) shows the final material 
distribution. The projection technique leads to a more smooth material distribution. When the 
projection technique is not used, the optimization algorithm tends to obtain a material gradation with 
high property gradients, almost close to a 0 – 1 design, which is opposite to FGM concept, where 
smooth and continuous gradations are desired. The final material distribution depicts a Functionally 
Graded Piezoelectric Transducer with PZT-5A material on the bottom surface and in the middle and 
PZT-5H material on the top surface. In addition, from Fig. 7 is evident that the final TPGF has a 
bi-modal dynamic behavior with relation to non-FGPT (transducer with only PZT-5A properties). 
Specifically, the final modes number 22 and 24 are predominant in the total response of the 
transducer. The PMC of the piston-like mode was incremented 10.20%, the adjacent PMC at left was 
incremented by 121.51%, and the adjacent PMC at right was incremented by 10.73%.      
 
 
6. CONCLUSIONS  
 

This paper presents a systematic study of the topology optimized design of FGPT aiming to 



modify their dynamic performance. The FGPT are designed using a continuum topology optimization 
algorithm based on: (i) a GFE to model the material gradation inside each finite element; (ii) CAMD 
approach to model a continuous design variable change; (iii) an explicit gradient control; (iv) a 
like-layer optimization problem, where the design variables are considered equals at each interfacial 
layer; and (v) a Modal Assurance Criterion (MAC) to track a user-defined mode shape. The TOM 
allows finding the optimal gradation of FGPT properties to enhance their performance in terms of 
user-defined PMC. The following conclusions can be drawn from these studies: 
1. The topology optimization method can be successfully applied as systematic tool to design 

FGPT; specifically, TOM can be applied to find optimal gradation function aiming to maximize 
the PMC of user-defined eigenmodes. 

2. The projection technique helps to find smooth gradation function which is desired for 
manufacturing purposes. In addition, the manufacturing of FGPT becomes possible by 
implementing the like-layer optimization problem; for instance, piezoelectric graded ceramics 
composed of green sheets can be sintering by using the Spark Plasma Sintering technique [20].   

3. The Modal Assurance Criterion (MAC) arises as an adequate technique for following desired 
eigenmodes. This is important to design FGPT for wave generation applications, where the 
piston-like mode is desired, since this mode is associated with high Piezoelectric Modal Constant. 

4. The numerical examples demonstrate that TOM and FGM concept can increase the Piezoelectric 
Modal Constant of user-defined modes. Thus, FGPT with optimal graded properties along 
thickness direction exhibit increment higher than 60% at first example, and higher than 120% at 
second example. 

5. The FGPT transducers here designed can be used for designing ultrasonic FGPT with high 
sensibility and broadband. Generally speaking, that kind of FGPT will allow deep penetration 
into a specific medium (e.g. human tissues) due to its high Piezoelectric Modal Constant at 
specific modes, and it will produce high resolution images due to length of its frequency response 
(e.g. bi-modal FGPT).   
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APPENDIX 
 

When the SLP procedure is implemented, the sensitivities of objective function (F) and 
constraints with respect to design variables are required. Basically, F can be considered as a function 
of nodal densities , which are again a function of design variables ; thus [16]: p
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Thus, the variation of 
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ρ  causes the variation of a number of nodal densities, which belong 
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here Si corresponds to the circle with its center located at the node i and radius equal to rmin, 

nfluence set Si as follow
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according to projection technique. Hence, the sensitivity of objective function F, with respect to 
design variable

i
n
TOM
ρ  of the node i, is expressed as:   

 

∑=
∂

∂

iSj i
p

TOMi
n
TOM ρρ
F                                                                 (17) 

 
The sensitivity of objective function F with relation to pseudo-densities 
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To complete the sensitivity of F, the gradient of the PMC of the mode k (
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 to pseudo-density pρ  of node i, is required. This gradient is obtained by differentiating Eq. 
(4); thus: 
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here the sensitivity of the kth eigenmode
kr , in resonance, with respect to the ith pseudo-density w Ψ

i
p
TOM
ρ  is obtained as: 
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nd Nmode is an appropriate number of the eigenmodes associated with the lowest eigenvalues.  
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