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ABSTRACT 

  
This paper presents a preliminary study on flutter boundary prediction of a smart adaptive 

aeroelastic multimode system, in which flutter takes place due to a coupling between higher 
aeroelastic modes during the process of structural adaptation, while the flow speed is kept fixed. In 
such a new situation the conventional damping method would hardly work well. The prediction 
approach based on Jury's stability criterion in the discrete-time process will be applied. Numerical 
results show that Jury's criterion is much more effective in predicting the flutter boundary than the 
damping coefficient of the flutter mode. 
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1. INTRODUCTION  

  
Flutter test is always carried out with great attention, because an explosive flutter often sets in 

unexpectedly with a small increase in speed. For an ordinary airplane, the flight speed (or the 
dynamic pressure) is the only variable to the instability, provided that Mach number is fixed. The 
higher the flight speed is, the narrower the margin for stability is. This is also true for a morphing 
airplane with adaptive wings if it flies while keeping structural properties of the wings unchanged. 
However, during the process of structural adaptation of the wings, their structure and a system for 
adaptation would become movable and less rigid, so that the adaptation might lead to coalescence of 
the frequencies of aeroelastic modes of the wings, even though the flight speed is fixed. This presents 
a newly emerging situation for flutter. 

Flutter boundary prediction methods in which the information is extracted solely from 
measured response signals of the wings are classified into two categories: 1) evaluation of the 
damping of the flutter mode, and 2) estimation of stability of the aeroelastic wing system by using (a) 
Flutter Margin based on the Routh stability test in the continuous-time domain [1, 2] or (b) Jury's 
stability criterion or flutter margin for discrete-time systems founded on Jury's criterion in the 
discrete-time domain [3-14]. 

Although the damping approach is traditionally very popular to aeroelasticians, there are often 
essential difficulties. Analytically the damping coefficient of the critical flutter mode shows little 
variation until a drastic and sudden drop occurs near the boundary. Furthermore, damping 
coefficients measured in actual tests were very scattered particularly in a range close to the boundary 
[15, 16]. 

To examine directly the stability of the wing system, Zimmerman and Weissenburger [1] 
proposed a parameter called Flutter Margin, applicable only to a binary-mode flutter system. This 
parameter is based on the Routh stability test of the system and expressed in terms of the frequencies 
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and dampings of the two modes coupled to cause flutter. Analytically, Flutter Margin shows a 
monotonic decrease in its value over a wider speed range. As mentioned above, however, an accurate 
evaluation of the true dampings is usually very difficult. Damped oscillations are easily affected by 
air turbulence. Hence, two stochastic means, i.e., the histogram and the probability density function 
were recently incorporated in Flutter Margin to account its uncertainty [2].  

Jury's stability criterion [17] is defined by the coefficients of the characteristic equation of the 
system expressed in the discrete-time process, just like Routh's stability test by those of the 
continuous-time representation. The first application of Jury's criterion with the use of an ARMA 
modeling [18] to response signals of a wing model test revealed its superiority over the conventional 
damping method in predicting the flutter boundary [3]. Jury's criterion was also reported to be 
effectively applicable to the estimation of divergence boundary of forward-swept wings [7, 19]. More 
recently, a new stability parameter, named "flutter margin for discrete-time systems (FMDS)" was 
proposed by combining two parameters of Jury’s criterion [5, 6]. FMDS showed remarkably 
monotonous behaviors characterized by an almost linear relationship with respect to the dynamic 
pressure of the flow. The superiority of FMDS was very recently demonstrated over two other 
approaches in numerical examples [11]. Most studies mentioned above were mainly associated with 
flutter analyses or tests conducted on stationary conditions. It should be noted, however, that the Jury 
criterion and FMDS were also applied to nonstationary flutter analyses and tests in which the 
dynamic pressure increased at a constant rate [7-9]. FMDS was also successfully applied to flutter of 
a two-dimensional adaptive morphing wing [12-14] which would occur in a "nonstationary" process 
of adaptation represented by a gradual change in the natural frequency of the heaving or the pitching 
mode while the flight speed was fixed. A brief review [20] on flutter prediction based on the Jury 
criterion and FMDS was presented from a viewpoint of an adaptive wing.  

All studies based on Jury’s criterion or FMDS were concerned with the binary-mode flutter, 
except for Ref. 10, in which an extended FMDS was proposed in an ad hoc manner to apply to a 
cantilever wing with a flap. As pointed out in [11, 20], the extended FMDS for the binary-mode case 
is not equivalent to the original FMDS. In addition, it was reported that the extended FMDS did not 
show a monotonic behavior for a low-aspect-ratio wing [11].  

It is, therefore, necessary to exploit a reliable flutter prediction of a multimode system based 
on Jury's criterion. For this purpose, a preliminary analysis on supersonic flutter of a two-dimensional 
multimode panel supported with a distributed spring was presented [21]. Panel flutter has well been 
understood so that one may easily construct an aeroelastic system in which a higher mode is involved 
in the occurrence of flutter. In addition, its stability characteristics are essentially similar to those of 
airplane wings. In the present study, we will extend the multimode panel system used in the previous 
analysis [21] to an adaptive one in which the stiffness of each mode can be changed continuously. 
Using this system, we may examine the usefulness of Jury's stability criterion for estimating the 
instability caused by the coalescence of the frequencies of two aeroelastic higher modes due to a 
mal-adaptation of the panel stiffness.  

 
 
 

2. ANALYSIS 
  

A two-dimensional panel is exposed to a supersonic flow streaming along the x-axis, as 
shown in Figure 1. The panel is simply supported at the leading and trailing edges, i.e., x= 0 and l. The 
z-axis is taken normal to the x-axis and the motion of the panel is given by w(x, t), where t is time. The 
aerodynamic force, pa(x, t), acts on the upper surface of the panel, which is also supported by a 
distributed spring with spring constant k, and its restoring force is given by kw(x, t). 

The equation of motion of the panel is given [22] by 
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where D, h, and   are, respectively, the stiffness, thickness and mass density of the panel. The 
aerodynamic force is assumed in the form of piston theory [22] as  
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where M, U and a  are the Mach number, air velocity and density of the supersonic free flow, 
respectively. The deflection of the panel is assumed by using the first four modes: 
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where wm(t) is the amplitude of the m-th mode. Applying the Galerkin method to Eq. (1) and 
introducing a vector defined by 
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we obtain the state differential equation as  
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From now on, we assume that the values of Ki  (i=1, ..., 4) can independently be assigned, 

although they are originally equal to each other as shown above by   [21]. From Eq. (9), we obtain 
the characteristic equation in the continuous-time system:  
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where an asterisk over a variable denotes a complex conjugate of the variable. Taking the z 
transformation of equation (11), we have 
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where and correspond to  and , respectively, and  is defined by iz *
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where T is a sampling period. Equation (12) is rewritten as 
  

       with a(9)=1. (14) 
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When the system under consideration is stable, Jury’s stability criterion is expressed by 
 
    F(1)>0, F(-1)>0 and  1 1 0    2,  4,  6,  8.i iX Y for i     (15) 
 
As for the four-mode system, the dynamic stability is usually determined by X7 -Y7. The submatrixes 
Xi-1 and Yi-1 are given in Appendix. 
  

 
 

3. NUMERICAL EXAMPLE AND DISCUSSION 
  
Like in [21], again we have assumed a smart distributed spring which may stiffen each natural 

vibration mode of the panel independently. Furthermore, here we introduce a hypothetical adaptive 
system in which the stiffness, i.e., the natural frequency of a certain selected mode is variable without 

 



affecting the remaining modes. Using this adaptive system where coalescence of the two natural 
frequencies is possible, we will compare the feasibility of the present approach based on Jury's 
stability criterion with the damping method in predicting its flutter boundary. Numerical values to be 
used in the calculation are: 

l=100 [mm], h=0.1 [mm], E=1.28x104 [kg/mm2], m =8.13x10-10 [kg sec2/mm4], 

a =1.0 x10-5 [kg sec2/mm4],  =3.0 [1/sec], T =0.007 [sec]  
Without any support from the spring system, the natural frequencies of the four modes, f1 to f4, were 
18.0, 72.0, 161.9, and 287.9 [Hz], and the panel flutter was predicted to set in at the dynamic pressure 
q=9.17x10-5 [kg/mm2] due to a coupling between the first and the second mode. To decouple the 
second mode from the first, we will make only K2  increase from zero while K1, K3, and K4.remain 
zero.  

In Figure 2, the natural frequencies of the four modes calculated at q=0 are plotted against K2. 
With increasing K2 the natural frequency of the 2nd mode approaches that of the 3rd mode. A series  
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of the flutter analysis was carried out by changing K2 with the dynamic pressure being fixed at 
q=4.0x10-5 [kg/mm2]. Figure 3 illustrates the dampings of the four modes against K2. As K2 increased, 
the damping of the first mode increased whereas that of the second mode decreased gradually and 
suddenly changed its trend around K2=about 5.7x105 [1/sec2] with a sharp drop to zero at K2=5.8x105 
[1/sec2]. Reacting to the second mode, the 3rd mode damping increased rapidly. The flutter boundary 
with respect to K2, (K2)f, was 5.8x105 [1/sec2], where the frequencies of the second and the third 
mode coalesced.  

t further. 

The parameter X7-Y7 is plotted against K2 in Figure 4, where its value decreases very quickly 
around K2=3.5x10-5 [1/sec2] and then it is reduced rather uniformly between K2=4.0x10-5 and 
5.0x10-5 [kg/mm2] and continues to remain very small but positive up to K2= 5.8x10-5 [1/sec2]. In this 
analysis no structural damping was taken into account. Hence, we will skip a further discussion of 
stability in the range above K2= 5.0x10-5 [1/sec2], because the inclusion of the damping would change 
the aspect of stability somehow different in the third phase. It is necessary to study this poin

From Figure 4 it is clear that one may observe easily the approaching to the boundary through 
the three phases; the first rapid drop of X7-Y7 around K2=3.5x10-5 [1/sec2], the following steady 
decrease in X7-Y7 and the final stage with very low stability. On the other hand, in Figure 3 the 
damping of the critical mode remained sufficiently high up to about K2=5.7x105 [1/sec2], and quite 
suddenly dropped very quickly to zero. It is very difficult to predict the appearance of instability in 
advance. 

In the previous flutter analysis [21] of the multimode panel system where only the dynamic 
pressure increased, the parameter X7-Y7 decreased gradually in a monotonic manner over the whole 
dynamic pressure range. In other words, this flutter boundary estimation would be more practical in a 
non-adaptive panel system. In such an adaptive system treated here, instability characteristics are 
considered certainly very complicated, because there seem to be multiple possibilities of flutter 
corresponding to different combinations of the modes coupled in the process of adaptation. As 
mentioned earlier, in the case of an ordinary aeroelastic system the dynamic pressure of the flow, i.e., 
the flow speed, is the unique variable, whereas, in this analysis, four spring constants, K1 to K4, are 
essentially variables, although all except for K2 were kept at zero. In an actual system, these variables 
can not be treated separately. 
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4. CONCLUSIONS 

 



  
We have performed the preliminary study on flutter boundary estimation of the smart 

adaptive aeroelastic multimode system, using Jury's stability criterion. The instability was generated 
due to the coupling between the second and the third aeroelastic mode while the second-mode 
stiffness of the smart distributed spring increased as an adaptation. The numerical results showed that 
the prediction method founded on Jury's criterion was much more effective than the conventional 
damping approach. Further study is necessary to comprehend complicated behaviors of such adaptive 
aeroelastic systems in which multiple possibilities of aeroelastic coupling may exist in the process of 
structural adaptation. 
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APPENDIX: Submatrixes Xi-1 and Yi-1 used in Eqs. (15) are defined by 
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