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ABSTRACT  

 
In this study, a passive vibration suppression system comprising piezoelectric elements is 

developed for flexible structures. The vibration suppression system comprises a cantilevered beam 
with bimorph piezoelectric ceramic tiles shunted by an RL electrical circuit. A general design method 
for the vibration suppression of the beam is theoretically analyzed using the mode analysis assuming 
that the piezoelectric elements are sufficiently thin and do not change the mode shape of the beam. 
Under this assumption, the vibration suppression system for the beam could be designed by tuning 
the resistance and inductance parameters of the shunted RL network. As an example, numerical 
simulations are carried out for a cantilevered beam, and the results are verified experimentally. The 
results of the numerical simulations and the vibration control experiment show that the passive 
vibration suppression system is practically effective in damping vibrations. This study shows that 
electrical systems function as a type of a dynamic damper for mechanical systems, and it is quite 
effective to optimize the resistance, as well as the inductance, of the passive electrical network to 
suppress the peak gain of the response transfer function over the resonant frequency range.  
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1. INTRODUCTION 

 
In the recent years, smart structures in which piezoelectric elements are used as embedded 

sensors and actuators and as elements of active structural vibration suppression systems have been 
studied. Two types of piezoelectric control systems are used for vibration damping, i.e., active and 
passive control systems. Active control systems require complex amplifiers and associated sensing 
electronics, whereas passive control systems require only a simple passive electrical circuit. 
Moreover, passive control systems are more effective in vibration damping with limited resources, 
such as in the case of space applications. 

Piezoelectric materials strain when an electrical field is applied across them, which makes 
them suitable for application as actuators in control systems. Further, they also produce voltage when 
subjected to strain, as a result of which they can be used for sensing strains. In general, piezoelectrics 
can efficiently transform mechanical energy into electrical energy and vice versa and, therefore, can 
be used as structural dampers [1]. The modeling of passive dampers by using piezoelectric elements 
along with shunted circuits has been reported by several literatures [2, 3]. 

In this study, a dynamic model is developed for structures with passive damping mechanism 
and piezoelectric elements. The efficiency of passive vibration damping is estimated according to the 
optimal tuning theory assuming that the mass and stiffness of the piezoelectric elements are small as 
compared to those of the beam so that the variations in the eigenfrequencies and mode shapes are 



 

 

negligible. The passive vibration suppression system is used for damping the vibrations of a 
cantilevered smart beam, and the results of the numerical simulations are compared with those 
obtained experimentally.  
 
 
2. MODELING OF PASSIVE PIEZOELECTRIC DAMPERS  
 
2-1. Constitutive equations 
 

 Figure 1 shows a typical piezoelectric element. The fundamental constitutive relations are the 
relations between strain and applied field and between the charge density and the applied strain. 
 

                                                                                                                   (1) 

                                                                                                                   (2) 
 
where S1 and T1 denote the applied strain and stress in the x-direction, respectively; E3 and D3, the 
applied electric field and charge density in the y-direction, respectively; and sE

11; d31, and , the 
elastic compliance in the x-direction, piezoelectric constant, and dielectric constant, respectively.  

E3 and D3 are replaced by the voltage V3 and the current I3 in the following relations, 
respectively: 
 

                                                                                                                    (3) 
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where s is the Laplace parameter. The inherent capacitance of the shunted piezoelectric is given as 
 

                                                                                                                      
(5)

 
 
The constitutive equation can be given as 
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Figure 1.  Piezoelectric element with potential difference applied across top and bottom surfaces  

 



 

 

2-2. Resonant circuit shunting 
 
Consider a resonant circuit and shunt the inherent capacitance of the piezoelectric element 

using a resistor and an inductor in series, thereby forming an LCR circuit. This circuit is shown in Fig. 
2. In this case, the electrical impedance ZEL of the entire circuit including the piezoelectric element is 
given by 

 

                                                                                                          
(8)

 
 

where L is the shunting inductance and R is the shunting resistance. This circuit is resonant with some 
damping due to the resistance, R. and it can be tuned in the vicinity of a mode of the underlying 
mechanical system and thereby greatly increase the modal damping ratio, in an effect similar to the 
classical proof mass damper (PMD) or resonant vibration absorber. 

The constitutive equation of piezoelectrics with a resonant passive circuit is given by 
 

                                                                                                     (9) 

                                                                                                    (10) 
 
where the electrical impedance of the open loop is replaced by the total electrical 
impedance of the shunted circuit ZEL(s). The relation between S1, T1, and I3 can be given from Eqs. (9) 
and (10) as follows: 

              
(11) 

                     

Since there is no external input current (I3 = 0) in passive shunting applications, the compliance  
that relates S1 and T1 can be expressed by using the nondimensional electrical impedance 

 as 
 

                                                                            
 (12)

 
 
where k31 denotes the electromechanical coupling constant of the piezoelectric material and is defined 
as 

                                                                                                                    
 (13)

 

k31 represents the ratio of electrical energy and mechanical energy that can be stored in piezoelectric 
elements. 

Equation (12) shows that the compliance of the shunted piezoelectric is equal to the 
short-circuit compliance of the piezoelectric material modified by a term that depends on the 
electrical shunt circuit and the electromechanical coupling coefficient of the piezoelectric material. 

 

 
Figure 2.  Resonant shunted piezoelectric with resistor and inductor in series 



 

 

3. OPTIMAL DESIGN OF PASSIVE PIEZOELECTRIC DAMPERS  
 
3-1. Finite element modeling of dynamical system 
 

Consider a finite element model of a cantilevered beam with piezoelectric elements attached 
on both its surfaces, as shown in Fig. 3. The undamped equation of motion of the beam is expressed as 

 
                                                                                                            (14) 

 
where M and K are the mass, stiffness, and damping matrices, respectively. The deflection {q} and 
external force {F} are the vectors of the transverse deflections , angular deflections , forces Fi, 
and moments Mi of each node.  

 
                                                                                        (15) 
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By introducing the modal coordinate transformation 
 

                                                                     (17) 
 

the equation of motion of the system can be transformed into the following modal form: 
 

                                                
(18)

 
 

where denotes the vector of the modal coordinate s; 
, the modal matrix; , the i-th modal mass; and 

, the i-th modal stiffness. 
 

 

 
  

 
 

Figure 3.  Finite element model of cantilevered beam with piezoelectric elements 
 
 
3-2. Modeling of feedback force of piezoelectric elements  
 

It is assumed that the mass and stiffness of the piezoelectric elements are small and do not 
affect the mode shape of the beam. It is also assumed that a bending moment applied to the beam 
causes a constant variation in the deflection angle between the ends of the piezoelectrics as follows: 



 

 

 

                                                                                    
(19)

 
 
Then, the couple of bending moments provided by the piezoelectric elements can be given as 
 

                                                                                 (20) 
 
where IP is the moment of inertia of both the piezoelectrics and Ep is the frequency-dependent 
Young’s modulus of the piezoelectric elements that can be described as the inverse of the mechanical 
compliance, i.e., Ep(s) = 1/s11(s).  

 
The piezoelectric bending moment MP is introduced into the equation of motion as the 

feedback force. It can be represented by using a displacement vector as 
 

 

                                                                    
(21)

 
 

The feedback force vector can be given as 
 

 

                    
(22)

 
         

If we consider a single vibration mode, e.g., the first mode, the modal feedback force can be 
given as follows:  

 

 

                                   
(23)

 
 
Therefore, the equation of motion for the first mode including the feedback force of the piezoelectric 
elements is written as 
 

 
 

                                 
(24)

 
 

where m1 and k1 are the modal mass and modal stiffness, respectively, in the case of the first mode and 
F1 is the modal force. The Laplace transform of the abovementioned equation gives the transfer 
function of the modal coordinate.  
 

                          

(25)

 



 

 

3-3. Optimal tuning problem  
 
The Young’s modulus Ep(s) of the piezoelectric elements with the resonant shunt circuit is given as 
 

                                
(26)

 

                       
            (27)

 
 
where is the elastic modulus of the shorted circuit. Substituting Eq. (26) into Eq. (25), 
the transfer function of the modal displacement can be given as  

                 
 (28)

 

where the new parameters F1P, m1P, and k1P are normalized by .  
The nondimensional transfer function is given as follows [2]: 
 

             
   (29)

 
 

where the nondimensional parameters are defined as follows: 
 

 : natural frequency 

  : nondimensional frequency 
  : electrical damping ratio 

  : resonant shunted piezoelectric electrical resonant frequency 

  : resonant shunted piezoelectric frequency tuning parameter 
 

 denotes the capacitance at constant strain, , and K31 and zST are the generalized 
electromechanical coupling coefficient and static displacement, respectively. 
 

                        
(30)

 

                                   
(31) 

 

 
 

Figure 4.  Mechanical proof mass damper (PMD) 
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It has been shown in a study [2, 3] that the similarities between a system containing resonant 
shunted piezoelectrics (RSPs) and a system containing a mechanical vibration absorber or a PMD can 
be used for the optimal tuning and damping of the electrical circuit of RSPs. Figure 4 shows the PMD 
and the displacement transfer function that includes a resonant vibration absorber similar to the RSPs. 
The optimal tuning parameters of the resonant shunted piezoelectrics are obtained as outlined in 
references and the optimal inductance and resistance of the resonant circuit are given as 

 

                
 (32)

 

                  (33) 

 
 

4. APPLICATION TO CANTILEVERED BEAM  
 
4-1. Numerical simulations  

 
Numerical simulations and dynamic tests were performed on the cantilevered beam with 

piezoceramics stuck to its surfaces. The cantilevered beam with the resonant shunted piezoceramics 
is shown in Fig. 5. The length, width, and thickness of the cantilevered beam was 45.00 cm, 3.00 cm, 
and 0.3 mm, respectively. A couple of surface-mounted piezoceramics were attached to both sides of 
the beam and shunted by using an RL resonant circuit. The shunted pair consisted of 0.2-mm-thick 
C-6 piezoceramic sheets manufactured by Fuji Ceramics Co., Inc. The specifications of the beam and 
the piezoceramics are presented in Table 1.  

The natural frequencies of the bare beam for the first and second modes were ω1 = 7.70 
rad/sand ω2 = 48.24 rad/s, respectively. The numerical simulations were carried out for three different 
positions of the piezoelectric elements, i. e., (1) root, (2) middle, and (3) tip. The optimal parameters 
for the first vibration mode obtained by using Eqs. (32) and (33) are listed in Table 2. Figure 6 shows 
the impulse responses and Bode gain plots for the three different positions of the piezoelectric 
elements.  

 

 
 

Figure 5.  Model of cantilevered beam with resonant shunted piezoelectrics (RSPs) 
 

Table 1.  Specifications of beam and piezoceramics 

 



 

 

Table 2.  Optimal parameters of RSPs  
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Figure 6.  Responses for various positions of piezoelectric elements 
 

 
 

Figure 7. Bode diagrams at optimal frequency tuning and various resistance values: 
(solid) optimal resistance tuning, R = Ropt; (dotted) R = 1.2Ropt; and (dashed) R = 0.8Ropt  
 

The Bode gain plots of the displacement of the tip of the cantilevered beam for various values 
of resistances when the piezoceramic sheets are placed at the root of the beam are presented in Fig. 7. 
These plots are very similar to the transfer functions for a 1-DOF system containing a PMD for 
various values of damping parameters. This similarity shows that the resistance of the RSPs functions 
as a damper of the PMD.  

Root 
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Tip 



 

 

4-2. Experimental results  
 

The results of a laboratory experiment [4] were compared with those of the numerical 
simulations in order to verify the validity of the analytical formulae for shunted piezoelectrics. An 
uncorrelated pseudo-random input was used to excite the beam near its first bending mode, and the 
displacement of the tip of the beam was measured. (Figures 8 and 9) The amplified displacement 
signal was collected and a transfer function from the input voltage to strain was computed. The values 
of the resistor and inductor were tuned to the first bending mode, according to Eqs. (32) and (33). 
Since the first mode frequency was very low for the experimental beam, a large inductance (Lopt = 
173.1 kH) was required for the resonant shunt circuit. During the experiment, the circuit of the 
resistor and inductor in series was replaced by a synthetic inductor consisting of an operational 
amplifier and a CR circuit shown in Fig. 10.  

The transfer function from the input voltage to the displacement is shown in Fig. 11. The 
resistance was further varied in the range of the optimal value to validate the behavior of the resonant 
shunted piezoelectric system in response to parameter changes. The characteristics of the numerical 
and experimental results were similar. This similarity shows that the analytical model of the shunted 
piezoelectrics can be used valid for estimating the performance of the passive RSP damper.  
 

 
a) Overview of experimental system 

 

 
b) Block diagram of sensory and measurement systems 

 
Figure 8.  Experimental setup for laboratory experiment  

 

 
 

Figure 9.  Experimental shunt circuit of passive piezoelectric damper  



 

 

 
Figure 10.  Synthetic inductor substituted for RL series circuit 

 

 
Figure 11.  Experimental transfer functions at optimal frequency tuning for various resistance values: 
(solid) optimal resistance tuning, R = 61.6 kΩ; (dotted) R = 124.5 kΩ; and (dot-dashed) R = 248.6 kΩ 

 
4. CONCLUSIONS  
 

A passive vibration suppression system has been developed for flexible structures. A finite 
element model of a flexible beam with piezoelectric elements has been developed. The dynamics of 
the beam with resonant shunted piezoelectrics (RSPs) is analyzed assuming that the mass and 
stiffness of the piezoelectric elements are small as compared to those of the beam. The response 
transfer function of the beam with RSPs is similar to that of a system containing a mechanical 
vibration absorber or a proof mass damper (PMD), and the classical tuning theory can be used for the 
optimal tuning of the circuit parameters of the RSPs. 

The effectiveness of the passive damping system with RSPs has been shown by numerical 
simulations and by carrying out an experiment using a cantilevered smart beam. The results of the 
numerical simulation show that the electrical system functions as a type of dynamic damper for the 
mechanical system, and it is quite effective to design the optimal parameters of the passive electrical 
network to suppress the peak gain over the resonant frequency range. 
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