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ABSTRACT 

 

This study is concerned with a vibration control strategy for a flexible-link system to achieve 

effective vibration suppression. It is required that the control system adapts to the dynamic 

characteristic variation of the system. A smart-link system composed of piezoelectric actuators and 

gain-scheduled controller is proposed to cope with change of the variable parameters which causes 

the dynamic characteristic variation of the system. An adaptive control is conducted by scheduling 

some LTI controllers to keep the stability and performance against the change of the variable 

parameters. The appropriate actuator location is determined by the target mode shapes. The 

scheduling gains for the LTI controllers designed at their operating points are optimized to obtain 

effective vibration suppression of the system. 
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1. INTRODUCTION 

 

Vibration suppression is very important to improve the performance of mechanical systems. Smart 

structure using lightweight devices such as piezoelectric sensors and actuators is a key technology to 

enhance the vibration control performance. Varadarajan (1998) & Saggere (1999) studied shape 

control of smart structure using piezoelectric materials [1, 2]. Ray (1998) investigated an optimal 

control of smart structure with piezoelectric sensor and actuator layers [3]. Bailey & Hubbard (1985) 

proposed simple control algorithm for transient vibration control by constant amplitude actuator and 

constant gain controller [4]. Crawly & Luis (1987) analyzed the stiffness effect of piezoelectric 

actuators to the elastic property of host structures [5]. Tzou (1991) investigated the piezoelectric 

effect on the vibration control through a modal shape analysis [6]. Choi & Lee (1997) proposed a 

robust force tracking control of a flexible gripper driven by a piezoceramic actuator [7]. Designing 

piezoelectric modal sensors and modal actuators [8, 9] have been examined for the efficient vibration 

control by Sun (1999) and Ryou (1998). Benjeddou (1999) presented a mechanism capable of dealing 

with either extension or shear actuation [10]. Uwe & Lother (1999) investigated an active vibration 

control of a car body using experimental modal analysis and modal controller [11]. Ono & Kajiwara 

(2007) investigated an integrated optimization of piezoelectric location and control system to enhance 

the vibration and acoustic control performance [12]. Almost these researches are related to motion 

and vibration control with smart structure modeled as a fixed linear time-invariant (LTI) system. 



However, the structural dynamic characteristics vary continuously in practical working conditions of 

mechanical systems. In this case, it is required to construct a control system that adapts to the dynamic 

characteristic variation of the system. Takagi (1999) & Kajiwara (2001) employed a gain-scheduled 

controller to cope with the dynamic characteristic variation of the system [13, 14]. It is expected that 

the enhanced vibration suppression can be achieved by synthesizing the adaptive control strategy and 

smart structure technology. From this background, this study proposes a gain-scheduled control 

strategy of smart structures with dynamic characteristic variation in order to achieve desirable 

vibration suppression. 

This study considers vibration suppression of a flexible-link manipulator system which has 

dynamic characteristic variation. The dynamic characteristics of the system are varied according to 

variable parameters such as the configuration and holding mass at the tip of the manipulator. In order 

to adapt to the change of the variable parameters, a smart-link system is constituted by the smart 

structure technology with piezoelectric actuators and gain-scheduled controller. The piezoelectric 

actuators are appropriately placed to control the target mode vibration. The structure is modeled by 

finite element analysis and then the model reduction with the modal coordinate transformation is 

carried out. The control system is designed by solving the H2 control problem using a reduced-order 

modal model. An adaptive control is conducted by scheduling some LTI controllers to keep the 

stability and performance against the dynamic characteristic variation of the system. The design 

problem for improving the H2 performance is defined and then the scheduling gains for their LTI 

controllers are optimized by SQP algorithm, resulting in an enhanced performance for the vibration 

control. The performance of the proposed gain-scheduled control system is evaluated by simulation 

and experiment in this study. 

 

 

 

2. CONTROLLED OBJECT AND MODELING 

 

The controlled object with two flexible-links is shown in Fig.1. This system is nonlinear and 

time-varying with respect to the elbow angle   and holding mass m2 at the tip of the manipulator. The 

variable parameter is defined by 
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The linear modeling of this system is carried out at a fixed elbow angle and holding mass as a design 

point of the variable parameter. This system is modeled by FEM with ANSYS at the design point and 

transformed into modal coordinate in order to describe a reduced-order state equation which is 

appropriate for the control system design.  

The piezoelectric ceramics and accelerometer are employed as actuator and sensor in the smart 

structure. The control forces are applied at the both ends of the actuator. An accelerometer is installed 

to detect the acceleration that is used for a feedback signal in vibration control system. In this study, 

modeling of the smart structure is carried out with the finite element and modal analyses by which the 

modeling of arbitrary shape structures and the control system design can be effectively executed [12]. 

Equation of motion of the structural system is described as  

uBwBxKxCxM sssss )()()()()( 21           (2) 

where Ms( ) and Ks( ) are the mass and stiffness matrices, respectively, and Cs( ) is the assumed 

proportional viscous damping matrix. x, w and u are the displacement, disturbance and control input 

vectors, respectively. In Eq.(2),   represents a design point on the elbow angle and holding mass 

which will be the scheduling parameter in control system. The degree-of-freedom of Eq.(2) becomes 

generally so large because of using FEM that the control system should not be designed directly to this 



spatial model. The coordinate transformation into the modal space is appropriate to conduct the model 

reduction for control system design. Adopting the lower natural modes )(Φ , Eq.(2) is transformed to 

the reduced-order state equation with the transformation ξΦx )( : 

uBwBqAq )()()( 21          (3) 

where 
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)(Λ  is the diagonal eigenvalue matrix and the modal matrix )(Φ  is normalized with the mass 

matrix. )(2 sB  can be determined by the relation between the control input u and the moment caused 

by the force from the piezoelectric actuator. The force f applied by the piezoelectric actuator is linear 

for the input voltage and so the relation between the control input u and the force f is described by 

ubf s2  where b2s is a constant.  

The output equation is generally described as 
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In this study, structural acceleration is detected by the accelerometer as feedback signal. 

Accelerometers are suitable to be installed in the smart structures since the external reference is not 

required for them. In case of the acceleration output, substituting the modal transformation ξΦx )(  

into Eq.(2) yields the modal acceleration: 
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From Eq.(5) and the detected acceleration xCy aa
)( , each coefficient matrix in Eq.(4) for the output 

equation becomes  
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Figure 1. Flexible-link system 

 

 

 

3. CONTROL SYSTEM DESIGN 

 
 

3-1. Controller Design at a Fixed Design Point 
 

The block diagram of the control system for a fixed design point is shown in Fig.2. P(s) is the 



controlled object described by Eqs.(3) and (4), and K(s) is the dynamic compensator to be designed as 

controller. H2 control problem is considered in this study. The controller K(s) is obtained by 

conducting the control problem: 

21min wyT.        (7) 

where Ty1w is the transfer function matrix between the disturbance w and the controlled variable y1. 

The controlled variable is described as 
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where z1 is the controlled response, and Q and R are the weighting matrices. The control problem in 

Eq.(7) is equivalent to 

][.min 11 RuuQzzE
TT         (9) 

against a white noise disturbance. In Eq.(9), E[*] shows a mean value. In this study, modal control is 

considered by defining z1 with modal coordinates. 

In the modal control problem, z1 is composed of the modal coordinates and formulated as 

qWz 101         (10) 

where W10 is the modal weighting matrix defined by 

 rw,,wwdiagW 22110         (11) 

r is the number of the adopted modes. Weighting each modal coordinate with each coefficient easily 

achieves the modal shaping which can mainly suppress the target mode vibration. Frequency 

weighting functions are generally used for achieving the frequency shaping, however, the order of the 

controller in this case is increased according to the orders of the frequency weighting functions. The 

modal control shown here does not increase the order of the controller and so is practically 

advantageous for developing the real systems. 

From Eq.(10), the controlled variable y1 is described as 

uDqCy 1211         (12) 

where C1 and D12 take the form: 
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The optimal control law with the control problem (7) or (9) is obtained as a form of state feedback: 

Fqu         (13) 

The optimal feedback gain F is 
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where P is the solution of the Riccati equation: 
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Each performance index with respect to the controlled response and the control input is 
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These performance indices can be calculated by 
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where X is the solution of the Lyapunov equation: 
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where FBAG 2 . 

In output feedback system, the output feedback low u = K(s)y  is described as state-space form: 
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In Eq.(19), the system matrices 
KA , 

KB , 
KC  and 

KD  of the controller are designed with the LMI 

solver. 
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Figure 2. Control system at a fixed design point 

 

 

3-2. Gain-Scheduled Control System 

 

The LTI controller described in Eq.(19) is available only in the vicinity of the design point   and 

does not guarantee the stability of the closed-loop system in wide working area. Therefore, the 

controller at an optional point is constructed by scheduling some controllers designed at their design 

points [14]. Each LTI controller is designed at each design point  n

ii 1
 . The optional point   is 

expressed by the convex decomposition with the operating points as 
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The controller to be designed at the point   is 
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When the system is affine to the variable parameter, the gain-scheduled controller is described as 
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where ),,1( nii   show the scheduling gains. The gain-scheduled controller is constituted by the 

interpolation of the LTI controllers designed at the design points which are given by 
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The block diagram of the gain-scheduled control system is shown in Fig.3. 



 
Figure 3. Gain-scheduled control system 

 

 

 

4. OPTIMIZATION OF SCHEDULING GAINS 
 

The controlled performance and the stability of the closed-loop system have to be maintained 

against the change of the variable parameter since the characteristics of the manipulator with multiple 

links highly depend on its configuration and holding mass. The flexible-link system is not affine with 

respect to the variable parameter and so the scheduling gains obtained by the convex decomposition 

in Eq.(20) don’t guarantee the closed-loop performance and stability. In this study, the robust stability 

at an optional point during the motion is guaranteed by conducting an optimization problem. 

Describing the design variable on the scheduling gains as )( , an optimization problem can be 

defined as 
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where   ,ηJ )(  and   ,ηgc )(  are the objective and constraint functions depending on both 

scheduling gains and design points such as the closed-loop norms described in the control problem (7) 

and (9). Giving   at a design point, the optimal scheduling gains are obtained by solving the 

optimization problem.   is changed in the working area and the optimization problem is conducted at 

some design points of  . As a result, the optimal design variable is solved as function of  . 

Reducing Hz1 in Eq.(16) enhances the vibration control performance. On the other hand, a 

consumable control cost Hu is limited because of using the piezoelectric actuators in this system and 

so the maximum control cost should be taken into account in the control system design. A 

simultaneous optimization problem to reduce the controlled response under the constraints on the 

control cost Hu is appropriate to achieve the enhanced control performance and can be defined by 

giving the objective and constraint function in the optimization problem (24) as 

ucz Hg,HJ  1
       (25) 

The optimization problem (24) is executed by SQP algorithm. 

 

 

 

5. SIMULATION AND EXPERIMENT 
 

The elbow angle changes between 0 and 120 degrees and the holding mass changes between 0 and 

40 grams. The structural system is modeled with lower 4 natural modes. The constitution of the smart 

structure is shown in Fig.4 in which three piezoelectric actuators and an accelerometer are installed on 

the flexible-links. The dimension and property of the flexible-link system are shown in Table 1. The 

accelerometer is used to detect the acceleration that is used for a feedback signal in vibration control 



system. Therefore, this system is three inputs and one output system. The thickness and width of the 

piezoelectric actuators are 0.5mm and 20mm, respectively, and these actuators are bonded to the link 

surface by a very thin adhesive layer. The maximum input to the piezoelectric actuator is 150V. The 

actuators are appropriately placed on the structure to control the vibration of lower 4 natural modes. 

Another actuator for applying the disturbance force w  is bonded on the backside of the 1st link. First, 

an LTI controller is designed at a given variable parameter, )20,60( g . This variable parameter is 

the center of the working area. And H2 modal control is employed to reduce the vibration of the lowest 

4 natural modes. In order to evaluate the control performance, the control performance factor   is 

defined by 
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In Eq.(26), )( jT wz1
 is the transfer function matrix with control between w  and 1z , and )( jV wz1

 is 

that without control. From this definition, smaller   means better control performance. Figure 5 

shows the relation between   and   with the LTI controller. The dark region in Fig.5 is the unstable 

region of the closed-loop system. Figure 6 shows the region where the control cost 
uH  exceeds the 

regulation value 
ucH  at the design point. The control performance factors and control costs were 

calculated with 1648 closed-loop systems to obtain Figs.5 and 6 by dividing the working range of both 

scheduling parameters into 41 points. From Figs.5 and 6, the designed LTI controller is not available 

in the whole working area of the system. 

 

 

Table 1. Dimension and property of manipulator 

Arm length(mm) 90 

Arm width(mm) 20 

Arm thickness(mm) 1 

Material Steel 

Young’s modulus(GPa) 2.06×10
11

 

Poisson’s ratio 0.3 

Density (kg/m
3
) 7.86×10

3
 

Joint angle  (deg) 0～120 

Joint mass m1 (g) 15 

Additional mass m2(g) 0～40 

 

 

 

 

 

Figure 4. Smart-link system 

 

accelerometer 



         
 

Figure 5. Relation between   and              Figure 6. Region where control cost exceeds 

with an LTI controller                                  that at the design point 

 

Next, the gain-scheduled control is employed for improving the closed-loop performance and 

stability of the system. The new design points are added at the four corners of the variable parameters. 

The total number of the design points becomes five. These design points of the variable parameter are 

given by 

 

1) T
),( 001    ：Controller K00000 

2) T),( 01202    ：Controller K12000 

3) 
T

),( 20603    ：Controller K06020 

4) T
),( 4004    ：Controller K00040 

5) T
),( 401205    ：Controller K12040 

 

Figure 7 shows a schematic diagram of these design points. In Fig.7, the four triangle regions 

constituted by the three design points are defined for constructing the gain-scheduled control system. 

The gain-scheduled control system is composed of the three LTI controllers designed at their design 

points and scheduling gains in each region. The control law is described as 
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where )3,2,1( ii  show the scheduling gains. The optimal scheduling gains are obtained by solving 

the optimization problem: 
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The obtained optimal scheduling gains are shown in Fig.8 as gradation corresponding to their values. 

Figure 9 shows the relation between   and   with the optimal gain-scheduled control. On the other 

hand, the same relation with the linear gain-scheduled control constituted by the linear interpolation 

of the three apex LTI controllers in each region is shown in Fig.10. Figure 9 demonstrates an 

enhanced vibration control performance with the optimal gain-scheduled control over the linear 

gain-scheduled control in Fig.10. It is also confirmed from Figs.5 and 9 that the control performance 

and the stability of the closed-loop system have been improved by the optimal gain-scheduled control. 
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Figure 11 shows the ratio of the control factors with the optimal gain-scheduled control and the 

optimal control designed for a given variable parameter. From Fig.11, the H2 norm of the controlled 

response with the optimal gain-scheduled control is almost equal to that with the optimal control 

designed for a given variable parameter in the whole working area. The control cost Hu with the 

optimal gain-scheduled control is nearly equal to the upper bound given by the optimization problem 

(28) in the whole working area. In actual control system, the controller has the optimal scheduling 

gain information in Fig.8 as a gain-map table and the real-time control is conducted by taking the 

optimal scheduling gains according to the variable parameter. 

An experiment has been carried out to verify the obtained results. The variable parameter is given 

by T)35,60( g . The given elbow angle is considered to be a command input. The principal purpose 

of this experiment is to evaluate the vibration control performance at the final stage of the positioning. 

This condition belongs to the region II in Fig.7 and so the gain-scheduled controller is composed of 

K06020, K00040 and K12040. The frequency responses at the tip of the smart-link system are shown in 

Figs.12 and 13 obtained by simulation and experiment, respectively. Figure 12 shows the ratio of the 

tip acceleration to the disturbance moment input. On the other hand, Fig.13 shows the ratio of the 

accelerometer output voltage to the disturbance input voltage. In Figs.12 and 13, the broken line 

shows the response without control and the solid line with control. There is some error between the 

calculated and measured resonance/anti-resonance frequencies. It is considered that this error is 

caused by the difference of the connecting condition of each link and boundary condition between the 

simulation model and experimental set-up. It is confirmed from the experimental result shown in 

Fig.13 that the 11dB reduction for the 1st resonance peak, 10dB reduction for the 2nd resonance peak, 

15dB reduction for the 3rd resonance peak and 9dB reduction for the 4th resonance peak have been 

achieved with the optimal gain-scheduled control even though the experimental result is a bit inferior 

to the analytical result in Fig.12.  

The effective vibration suppression is confirmed also in cases of other variable parameters. 

Moreover, the control performance with the optimal scheduling gains is compared to that with the 

linear scheduling gains for the other variable parameters, resulting in a superior control performance 

with the proposed method. It is also interesting to evaluate the vibration control performance during 

the motion. An experiment to evaluate this property has not been conducted yet, but reducing the 

vibration at the final stage of the positioning and keeping the stability during the motion are very 

important and the closed-loop stability is guaranteed by the proposed control system. The evaluation 

of the vibration suppression during the motion is a future task of this study. It has been verified by this 

application that the vibration control performance and stability of the flexible-link system with 

characteristic variation can be enhanced by the proposed smart-link mechanism and gain-scheduled 

control strategy. 

 
 

 
 

Figure 7. Design points of LTI controllers 
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Figure 8. Optimal scheduling gains 

 

     
 

Figure 9. Relation between   and   with        Figure 10. Relation between   and   with 

                                        optimal gain-scheduled control                            linear gain-scheduled control 

 

 
 

Figure 11. Ratio of control performance factors with the optimal  

gain-scheduled control and the optimal control 
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Figure 12. Calculated FRF of smart-link system    

 

 

Figure 13. Measured FRF of smart-link system 

 

 

 

6. CONCLUSIONS 
 

This study has proposed a vibration control strategy using smart structure technology for a 

flexible-link system with dynamic characteristic variation. The gain-scheduled controller is employed 

to cope with the dynamic characteristic variation of the smart-link system. The control system is 

composed of the multiple LTI controllers designed by H2 control problem and their scheduling gains. 

The optimization method of the scheduling gains has also been proposed in order to enhance the 

vibration control performance satisfying the stability during the motion of the system. The simulation 

and experiment have been carried out with the 2-link smart manipulator. It has been verified by this 

study that the enhanced vibration suppression can be achieved by the proposed smart-link mechanism 

and the gain-scheduled control strategy. 
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