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Abstract 

A sandwich-panel structure that exhibits effective variable thermal conductivity through its 

thickness would find applications in spacecraft thermal control. Topology optimization is considered as a 

means to guide the design of a compliant-cell core that deforms in response to a temperature gradient, 

alternately creating and breaking heat conduction paths. Topology optimization is a mathematical tool that 

generates a material distribution to achieve the best performance as defined by an objective function. This 

paper explores a topology optimization method for the design of two-material structures that must operate 

under mechanical and thermal loads. 2D compliant mechanisms that are simultaneously subjected to both 

prescribed temperature and heat flux boundary conditions are of particular interest. The isotropic materials 

considered may have different stiffnesses, thermal conductivity, and coefficients of thermal expansion. 

The design domain is filled by two isotropic material phases and a void phase. The presence of one phase 

in preference to another at each location in the domain is determined using a Solid Isotropic Material 

Penalization (SIMP) approach. Mechanical and thermal behavior is coupled via material coefficients of 

thermal expansion; finite element models are used to predict both uncoupled and coupled behavior. 

Optimization of the mechanical compliance under uncoupled conditions yields results that agree with 

those in the literature; the coupled results are novel. The volume fraction of individual materials is 

typically prescribed. However, coupled multi-physics analysis with multiple materials can yield 

interesting and useful designs when only the amount of void is constrained and the algorithm is free to 

choose which combination of materials to use. This design freedom is especially important in problems 

for which thermal conduction is critical, and it produces designs in which the best thermal properties are 

exploited. This topology optimization approach, when combined with appropriate contact models, should 

find application to the development of a passive thermal control interface for spacecraft thermal control. 
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1. INTRODUCTION 

Topology optimization techniques frequently generate non-intuitive structural designs. As discussed 

by Sigmund and Maute [1], several mathematical schemes exist for the formulation of topology 

optimization problems, and the technique has been successfully applied in the fields of aerodynamics [2] 

[3], electrostatics [4], fluid dynamics [5] or modal analysis [6]. For the design of single-material 

structures, density approach methods such as Solid Isotropic Material Penalization (SIMP) are quite 

popular. A matlab algorithm for optimizing mechanical compliance was developed by Sigmund [7], and 

was improved later into an 88-line code [8]. These codes use a SIMP interpolation scheme of the material 

properties and filtering techniques to reduce mesh-dependent designs that can arise with finite element 

formulations. Other methods such as the Finite Volume Method (FVM) [9] [10] or mesh-less techniques 

[11] have also been investigated in thermal optimization problems, and simulations produced results 

similar to those of finite element approaches, though not identical.  

Minimizing the mechanical compliance of a structure is often a good objective for structural design, 

and in particular for compliant mechanisms. Mehta et al. [12] studied a method for the design of cellular 

compliant mechanisms in high-strain configurations. These were modified to include internal contact.  

Thermal optimization problems usually focus exclusively on thermal conduction effects. Following 

the SIMP approach, one phase corresponds to material and the other to void (with quasi-null 

conductivity). The effects of heat convection further complicate the physical model and the optimization 

process, and are usually not considered [13]. A typical objective for thermal conduction problems involves 

finding the best material distribution such that the average temperature over the domain is minimized. For 

a limited amount of conductive material, a uniformly heated domain with a combination of fixed-

temperature and insulated boundaries can provide interesting geometries [9] [10].  

Thermo-mechanical optimization usually seeks to minimize the mechanical compliance of a 

structure. In most cases, these problems consider a uniform temperature offset from a reference 

temperature at which the thermal strains are considered null; the thermal governing equations are not 

solved. Rubio et al. [14] developed a method to optimize an output displacement while minimizing the 

thermal effects. The thermal compensations introduced in this paper preserved the functionality of initial 

non-compensated mechanisms and enhanced the reliability of operation at higher temperatures. Other 

studies investigated the effect of thermal expansion on a single-material design [15]. Rodrigues and 

Fernandes [16] demonstrated that a uniform temperature offset could severely modify the optimal 

geometry and, in some cases, could improve the mechanical compliance. 

Topology optimization methods are well-developed for one-material (two-phase) design. The 

physical assumptions are usually adequate to accurately represent the behavior of a single-material 

structure, and optimization of the mechanical compliance can be realized efficiently using a heuristic 

fixed-point method [7] [8]. However, extension of the optimization process to accommodate a third phase 

is not trivial, requiring modification of the SIMP interpolation scheme as well as a more sophisticated 

method for updating the design variables. Tavakoli and Mohseni [17] recently proposed an active-phase 

algorithm based on the work of Sigmund [7] and Andreassen [8] for multi-phase topology optimization. 

A topology optimization technique for two-material designs using a thermo-mechanical model was 

developed by Sigmund and Torquato [18]. Using two materials having positive coefficients of thermal 

expansion (CTE), they showed that it was possible to generate a structure that exhibits effective negative 

thermal expansion. Also, Sigmund developed a multi-physics topology optimization method for the design 

of one-material micro-electromechanical actuators [19], which was extended to a two-material model [20] 

that allows for the possibility of not specifying individual volume fractions. 

The approach in this paper generally follows the work of Sigmund. However, heat flux forcing is 

considered in addition to prescribed temperatures, both the thermal and mechanical governing equations 

are solved (using a 2D finite element formulation) and the objective function to be minimized is the 

mechanical compliance. Furthermore, the effect of thermo-mechanical couplings on the optimum design is    
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emphasized, in the context of a two-material model. Following the SIMP method for the interpolation of 

the material densities, the Method of Moving Asymptotes (MMA) developed by Svanberg [21] is used as 

a marching scheme to update the design variables. The aims are to evaluate the influence of the material 

properties on the final design, and to assess the efficiency of the method for optimizing the design of 

thermo-elastic compliant mechanisms. 

2. TOPOLOGY OPTIMIZATION METHOD  

In this section, both, mechanical and thermal systems of equations are derived in a two-dimensional 

analysis. The materials are assumed to be isotropic, and contact is not considered. For additional details, 

refer to Thurier [22]. 

2.1 The Solid Isotropic Material Penalization (SIMP) Method 

The domain is discretized into elements, within which uniform material properties are defined. The 

element material properties considered in this paper are the moduli of elasticity ( ), the thermal 

conductivity ( ) and the coefficient of thermal expansion ( ). These are defined over the domain using the 

Solid Isotropic Material Penalization (SIMP) approach [23]. They are functions of the properties of the 

two materials that compose the structure, material 1 and material 2. The SIMP approach consists of 

introducing continuous design variables (     )        that define the amount of material within each 

element.      indicates the presence of void, while      indicates material. Similarly, in a non-void 

element,      indicates the presence of material 1, while      indicates the presence of material 2. 

Following this model, the material properties follow the SIMP method as in Sigmund’s approach [20]: 

 

  (     )    
   (  

     (    )
    ) (1) 

  (     )    
   (  

     (    )
    ) (2) 

  (     )    
     (    )

     (3) 

 

Where (     ) are penalty terms. Typically, the experience shows that the value      provides 

reliable optimum results [23]. The value      is chosen so that the material properties within an element 

correspond to a weighted average of the material properties of the two materials, weighted by the design 

variable   . The role of the penalty terms is to penalize possible intermediate densities that can appear 

during the optimization steps, and therefore to avoid properties having little physical significance.  (  ,   , 

  ) represent the material properties of material        . The materials are assumed to be isotropic and 

their properties do not depend on temperature. Finally, the amount of each material to be used in the 

domain is prescribed. The objective of the optimization process is to realize the best performance by 

distributing the available material(s) in the best locations. 

2.2 Governing Equations 

A two-dimensional four-noded square element formulation is used to solve both the mechanical and 

thermal systems of equations. The model assumes that the systems are in equilibrium / at steady-state (no 

time dependence). The mechanical system is coupled with the thermal system of equations through the 
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coefficient of thermal expansion (CTE) of the materials. Therefore, the temperature field   must be 

determined before solving for the displacement field  . 

After formulating the heat equation element-wise, the global thermal system of equations can be 

written as:  

          (4) 

 

where the conductivity matrix     is given by the assembly of the element stiffness matrix: 

 

     ∑    
 (     )

 

   

 (5) 

 

    is the load vector (in      ) which characterizes the heat flux at the boundary and internal heat 

generation terms,   the number of elements in the domain. Solving equation (4) provides the temperature 

field, and the additional stresses and strains due to thermal expansion can then be determined. These 

depend also on the reference temperature      at which the thermal strain effects are considered null. With 

the notation   (     ) for the design variables, the (unconstrained) thermal strain is modeled as: 

 

   
   ( )[ (   )       ]           (6) 

 

where  (   ) is the vector of linear shape functions used in the finite element formulation. As a result, 

the internal strain energy in an element is given by: 

 

   
 

 
∬(     

 ) ( )(    )         (7) 

 

with   the matrix derived from the strain-stress relations in plain stress, and   the thickness of an element. 

The mechanical system of equations is then derived as: 

 

           (8) 

 

where    represents the mechanical load vector and    the thermal expansion effects.     is obtained by 

assembling the element vectors: 

 

   
  ∬              (9) 

 

with   the matrix of the derivatives of the linear shape functions in the finite element formulation. 

Similarly as in equation (5) for the thermal system, the global stiffness matrix is found by assembly of the 

element stiffness matrices. Finally, the system of equations to be solved sequentially can be written as: 

 

 {
                       

         ( ) (10) 

 

Using this formulation, the sensitivity analysis is then performed. 
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2.3 Sensitivity Analysis and Updating Scheme 

Using the solutions of the governing equations, the sensitivity analysis determines the direction of 

descent for the optimization process. Using an adjoint method, the optimization problem can be written as: 

 

         
 

     ( )    ( )     
 (        )    

 (         ( ))
 

                ( )                                                                                

 (11) 

 

where    is the objective function, (      ) the set of adjoint vectors to be determined, and    the 

constraints, which represent essentially the volume fraction constraints. Solving the adjoint problem 

consists of finding (      ) such that the derivatives of the field variables with respect to the design 

variables verify         and        . Carrying out the derivations, the adjoint equations to be 

solved are written as follow: 

 

{
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Therefore, the derivatives of the Lagrangian within each element   are determined explicitly as: 
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The constraints    consist of the volume fraction of each phase that can be used in the domain. In the 

context of two-material optimization, the volume constraints of each phase can be described as:  
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where    denotes the element volume,   the total volume of the domain,    the volume fraction of 

material to be used (over the entire domain), and    regulates the trade-off between the presence of 

material 1 and material 2. . This way, the fraction of void over the domain is     , while the fraction of 

material 1 is      . Note that these constraints are not linearly independent since it is possible to express 

one constraint as a function of the other two. 

For the first iteration of the optimization process, an initial material distribution must be defined. 

Conventionally, each element in the domain is assumed to contain a mixture of all the phases (materials 

and void) that respect the overall volume constraints. Therefore, unless otherwise stated, the domain 

consists initially of a uniform mixture containing the prescribed amount of each phase.  

Void: 

Material 1: 

Material 2: 
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2.4 Filtering and Update of the Design Variables  

The next step of the optimization process consists of filtering the Lagrangian’s sensitivities in each 

element. As suggested by Sigmund [20], the filtering technique reduces the mesh-dependence of designs 

arising from the finite element formulation, and avoids checkerboard problems to provide more reliable 

and realistic results. The technique used in the algorithms is the same as the one used by Andreassen et al. 

[8], adapted to two-material designs using Sigmund’s method [20]. The derivatives with respect to    are 

transformed into a weighted average considering the sensitivities in neighboring elements. The derivatives 

with respect to    are treated similarly, although weighting is not required. 

These filtered sensitivities are then used in the update of the design variables. According to 

Sigmund [19], the Method of Moving Asymptotes (MMA) developed by Svanberg [21] used in this paper 

present the advantage to be quite stable and computationally efficient compared to other methods such as 

Sequential Linear Programming (SLP). For further information about the numerical implementation of the 

technique, the interested reader is referred to Svanberg [21].     

Finally, the optimization process consists of iteration, with the following steps: 

 

(i) Solve the governing equations 

(ii) Perform sensitivity analysis and filtering 

(iii) Update the design variables 

(iv) If a stopping criterion based on changes in the design variables is met, stop the 

optimization. Otherwise, go back to step (i), using the new design variables.  

 

The stopping criterion corresponds to the amount of change in the design variables between two 

iterations. If the maximum change in all the element design variables is less than 1%, the optimum is 

considered to be reached. 

3. VALIDATION 

Unless otherwise stated, the mechanical compliance of the structure is the objective function 

considered, as given in equation (15). This has the advantage of generating the stiffest design with respect 

to the loads and boundary conditions. It is also a global criterion which complies with the numerical 

treatment of the optimization.  

 
         (15) 

3.1 Validity of the Algorithm. 

The validity of the algorithm was tested on problems available in the literature, first for the 

uncoupled mechanical and thermal systems of equations. Using a mechanical system of equations only, 

the algorithm successfully reproduced mechanical compliance optimization results presented in the work 

of Sigmund [7] and Andreassen et al. [8]. The performance of the algorithm was also tested on thermal 

compliance optimization, as performed by Liang et al. [9] and Gersborg-Hansen [10]. In these cases, the 

objective function was to minimize the global heat over the domain while the domain was heated 

uniformly, defined by            ; mechanical aspects were not considered. The algorithm reproduced 

shapes similar to those presented in the papers, though extended to two-material designs, as shown in 
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Figure 1. As expected, the material with the highest conductivity (shown in red on Figure 1) is placed in 

the most critical locations. 

 

 
Figure 1. Validation of the algorithm for thermal compliance optimization using two materials. (a), 

(b) and (c) present the boundary condition used to generate of the designs (d), (e) and (f) respectively. 

Colors: material 1 is in red, material 2 is in blue. 

Table 1 shows the values of the parameters used in these cases. Note that nominal units are used.  

 

Conductivity of material 1       

Conductivity of material 2        

Volume fraction of material          

Trade-off material 1/material 2          

Filter’s radius [8]            

Mesh Resolution               

 

Table 1. Parameters value for the thermal simulations. 

3.2 Thermo-mechanical System with Heat Flux Boundary Conditions.  

Mechanical compliance optimization was performed using the thermo-mechanical system of 

equations presented in Section 2.2. The algorithm was initially tested using a uniform temperature field 

over the domain. Designs similar to those of Rodrigues and Fernandes [16]. were obtained. However, the 

introduction of heat flux boundary conditions reavealed some numerical instabilities.  

Figure 2 (a) and (b) represent respectively the mechanical and thermal boundary conditions used in 

the other simulations presented in this paper. In particular, the thermal boundary conditions consist of a 

heat flux input at the top boundary, a sink temperature       at the bottom, and insulated sides. In the 

T=100  

Insulated 

(a) 

T=100  

(b) 

 

Insulated 

T=10

0  

(c) 

(d) (e) (f) 
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presence of a non-zero heat flux input, the algorithm did not converge because elements near the top 

boundary alternated between material and void from one iteration to the next. The difficulty is that heat 

flux into the domain cannot be effectively transmitted by the void elements that can appear during 

optimization. These elements present very low thermal conductivity, and therefore extremely high 

temperatures can be reached. The numerical issues for sensitivity analysis are significant, as illustrated by 

the design in Figure 2 (c). To avoid these numerical issues, a high conductivity layer, simulating a 

conductive structural face sheet, was introduced at the top of the domain. This layer serves to distribute 

the input heat efficiently into the structure and an optimum design can be found, as shown in Figure 2 (d).  

 
Figure 2. One-material mechanical compliance optimization using the thermo-mechanical model. 

(a) and (b): Boundary conditions. (c) Typical design obtained when no high conductivity layer is used; 

isolated elements near the top boundary alternate between void and material. (d) Optimum result using a 

high conductivity layer at the top of the domain. 

3.3 Two-material Designs for Thermo-mechanical Models. 

Two-material designs were generated using this added high conductivity layer, and the effects of 

the thermo-mechanical gradients on the shape of the structure were evaluated.  

Table 2 summarizes the standard values of the parameters used in the simulations. In Figure 3 and 

Figure 4, the amount of material is constrained such that void occupies 60% of the domain, and each 

material occupies an equal amount of 20% each. Material 1 is the stiffest material, and is represented in 

red. 

For a structure maintained at the reference temperature, the stiffest material is placed in critical 

locations to stiffen the structure, as shown in Figure 3(a): near the clamped ends and the point of 

application of the forces. An optimal heated structure can present a different shape: in Figure 3(b), thermal 

expansion increases the effective compliance of the structure. 

In Figure 4, the ratio of the CTEs of the two materials is modified from Figure 4(a) to Figure 4(b). 

While this change does not substantially modify the shape of the structure, the material with the smallest 

CTE tends to be placed in the top corners and in the middle of the structure. The structure seems to use 

thermal expansion of the materials to reinforce the “bridge” configuration to resist the forces pulling 

downwards.  

  

(d) (c) 

(a) (b) 
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Modulus of elasticity of material 1       

Modulus of elasticity of material 2       

Conductivity of material 1     2  

Conductivity of material 2        

CTE of material 1            

CTE of material 2           

Poisson ratio        

Reference Temperature         

Sink Temperature           

Heat flux input        

Force input       

Volume fraction of material          

Trade-off material 1/material 2          

Filter’s radius [8]            

Mesh Resolution               

 

Table 2. Parameters value for the thermo-mechanical simulations of Section 3.3. 

 

 
Figure 3. Influence of the heat flux on a two-material topology optimization structure using a thermo-

mechanical model. (a) Optimal structure at reference temperature (   ). Objective function final value: 

        . (b) Optimal structure of a heated structure (   ). Objective function final value:    
     . Colors: material 1 is in red, material 2 is in blue. 

 
Figure 4. Influence of the CTE on a two-material topology optimization structure using a thermo-

mechanical model. (a)                 . Objective function final value:         . (b)    
              . Objective function final value:         . Material 1 is in red, material 2 is in blue. 

In the preceding simulations, the volume fractions of the individual materials used are constrained. 

However, for a two-material, multi-physics problem, it could be useful to relax some of the constraints. 

Indeed, with respect to the compliance minimization problem, the amount of void is generally prescribed 

to avoid trivial solutions that consist of filling the entire domain with material. However, the quantities of 

individual materials do not need to be prescribed: the decision of how much of each material to use can be 

left to the optimization process. Considering the mechanical system only, the obvious choice is that the 

material with the highest modulus of elasticity is chosen, leaving the other material unused, as shown in 

Figure 5(a).  

(a) (b) 

(a) (b) 
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Figure 5. Partially constrained optimization of the mechanical compliance of a two-material 

structure. Conductivities of the materials:     ,     . (a) Non heated structure (   ). Objective 

function final value:         . (b) Heated structure with    . Objective function final value:    
     . (c) Heated structure with      . Objective function final value:         . Material 1 is in red, 

material 2 is in blue. 

Nevertheless, some heated configurations such as those shown in Figure 5(b) and Figure 5(c) 

suggest introducing the other material in some specific locations to minimize the compliance. Therefore, 

the thermal properties of the two materials do influence the optimal results, despite the objective function 

focusing on mechanical aspects. In these examples, an initially equal amount of each material was 

assumed in the domain, and the optimal solutions did not seem to depend highly on these initial values. 

4. CONCLUSION 

Based on previous algorithms and techniques mainly used for one-material structural optimization 

problems, a two-material thermo-mechanical topology optimization algorithm was developed and tested 

on mechanical compliance minimization problems with input heat fluxes. The two-material model was 

tested on thermal problems that succesfully reproduced the shape of existing one-material designs from 

the literature. A high conductivity layer was introduced to improve the distribution of heat input to the 

structure. Also, material thermal expansion properties were found to affect the optimal structures in 

problems with input heat fluxes. Finally, partially constrained problems in which the volume fractions of 

individual materials are not prescribed were found to be useful.  

This method can be improved. Nondimensionalization and subsequent extension to specific design 

problems of interest should be addressed. The use of more rigorous bounds for the material properties, 

such as the Hashin-Shtrikman bounds [20] [23], could also be considered to ensure feasible, 

manufacturable solutions. Finally, the use of a commercial finite element code might improve the 

accuracy of the analysis for domains having more complex geometry, and allow further development of 

this work.  

(a) 

(c) 

(b) 
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Finally, thermo-mechanical systems of this type are of interest for passive spacecraft thermal 

control systems on spacecraft [24]. Based on mismatch of thermal expansion of two materials, mechanical 

and thermal contact could be created or broken in order to modify heat conduction paths between 

electronic “black boxes” and a thermal bus. The goal would be to maintain the electronics within an 

allowable range of temperature. Important features of this problem include heat flux boundary conditions. 

Under low heat loads, the contacts should be open and the effective conductivity should be low to prevent 

the electronics from getting too cold. Under high heat load, the contacts should close to increase the 

effective conductivity and prevent the electronics from getting too hot. Topology optimization with 

contact should provide a means to guide the design of a compliant-cell sandwich-panel core that exhibits 

variable thermal conductivity. 
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