
ICAST2014: 25th International Conference on Adaptive Structures and Technologies
October 6-8th, 2014, The Hague, The Netherlands

ICAST 2014 #023

Simultaneous optimization of distribution and gain of piezoelectric
sensor networks for the improvement of active vibration control

Augusto H. Shigueoka and Marcelo A. Trindade

Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, Av.
Trabalhador São-Carlense, 400, São Carlos-SP, 13566-590, Brazil

Abstract

Modal sensors and actuators working in closed loop enable to observe and control independently specific
vibration modes, reducing the apparent dynamical complexity of the system and the necessary energy
to control them. Modal sensors may be obtained by a properly designed weighted sum of the output
signals of an array of sensors distributed on the host structure. Although several research groups have
been interested on techniques for designing and implementing modal filters based on a given array of
sensors, the effect of the array topology on the effectiveness of the modal filter has received much less
attention. In particular, it is known that some parameters, such as size, shape and location of a sensor,
are very important. This work presents the optimization of the distribution of a network of piezoelectric
sensors bonded to a clamped plate. A piezoelectric actuator is considered for the excitation of the plate
and it is desired to design discrete modal filters able to isolate the response of selected vibration modes.

1. INTRODUCTION

The use of piezoelectric materials (specially piezoceramics) as sensing and actuating elements has
been extensively studied due to the possibility of building them as lightweight and compact devices in
several geometric configurations, since they are relatively inexpensive and present the necessary elec-
tromechanical coupling [1]. In the last decades, a great research effort has been put on the modeling of
the electromechanical coupling of structures with piezoelectric elements (actuators/sensors). In terms of
applications, integrated piezoelectric sensors and actuators have been most often applied to the active
control of mechanical vibration and noise in structures subjected to several types of excitation, or even
self-excited structures, especially for aeronautic and aerospace applications [1].

On the other hand, the performance of integrated systems applied to active vibration and noise control
can be substantially improved by the use of high quality modal filters [2, 3, 4]. In this context, the devel-
opment of active control strategies with optimal performance using modal sensors and actuators has been
the object of intensive research. Modal sensors and actuators working in closed loop enable to observe
and control independently specific vibration modes, reducing the apparent dynamical complexity of the
system and the necessary energy to control them [5, 6, 7]. The high performance of modal controllers
depends on several parameters. The size, form and effective electromechanical coupling coefficient of a
piezoelectric material must be considered to the development of modal sensors and actuators. Although
pioneer works have proposed continuous modal sensors and actuators [8], the evolution of modal filter
techniques and its applications to active vibration control indicates several advantages in the use of an
array of discrete sensors instead [9].

Continuous modal sensors are designed to ensure shape coupling between sensing material and elas-
tic strain due to the target vibration modes of the host structure [7, 8]. An array of sensors, on the other
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hand, is in general composed by small piezoceramic patches and depends on a convenient weighted sum
of the sensors signals to achieve an output signal with the properties of a high-performance modal fil-
ter [5, 6]. Recent works apply modal filters using an array of discrete sensors for the construction of
smart integrated systems with built-in damage detection capabilities [10, 11]. Several methodologies
have been used for the evaluation of the weighting coefficients for the output signals measured by an
array of sensors. They can be divided in three groups: target modes output match, optimization tech-
niques and frequency response function (FRF) matrix inversion. Whenever the target mode shapes are
known/predicted and their reading in terms of output amplitude in each sensor of the array can be iden-
tified, a technique, proposed by Meirovitch and Baruh [12] and based on the orthogonality of normal
modes, considers that the weighting coefficients should match the output of each sensor for the target
mode. This technique may be strongly affected by spatial aliasing. The weighting coefficients may also
be evaluated using an optimization algorithm to minimize the difference between the weighted response
and a desired modal response. Shelley [9] proposed an on-line adaptation algorithm to estimate the de-
sired modal response and update the weighting coefficients. The third group of methods is based on the
inversion of the FRF matrix, which can be either predicted by a numerical model [2] or experimentally
measured [9, 13], in order to shape the target filtered response.

These techniques may lead to high-performance modal filters, but generally within a limited fre-
quency range [6]. Preumont et al. [6] have suggested that the frequency range of high-performance
filtering depends on the relation between the number of vibration modes to be filtered, in that frequency
range, and the number of sensors in the array. They concluded that the number of sensors in the array
should be larger than the number of vibration modes to be filtered. Although this is true for an arbitrar-
ily distributed array of sensors, it is possible to show that the location of the sensors, that is the array
topology, have a significant effect on the observability of the vibration modes and, thus, on the filtering
performance of modal filters derived from it. Therefore, it should be possible to optimize the array topol-
ogy and, consequently, increase the number of filtered vibration modes, thus the frequency range, for a
given number of sensors available.

Discrete spatial modal filters were already used for quasi-modal or semi-modal feedback and feedfor-
ward noise and vibration control [3, 13, 14]. The theory developed by Meirovitch and Baruh [12] shows
that perfect modal sensors combined to perfect modal actuators should allow to control independently
a given set of vibration modes. They named their feedback control law as Independent Modal Space
Control (IMSC). However, it is not feasible in practice since there are no perfect modal sensors and
actuators. Therefore, some effect on non-targeted vibration modes should be expected due to residual
filtering errors of sensors and/or actuators. Nevertheless, realistic modal sensors and/or actuators should
at least be able to improve feedback control roll-off performance. A modification of IMSC was succes-
fully implemented by Baz and Poh [14] using only one actuator and three sensors aiming at controlling
the first two vibration modes.

Topology optimization techniques are common in advanced structural design, for instance the simul-
taneous design of actuated mechanical devices, and often present a multiobjective character [15, 16, 17].
Techniques for topology optimization include but are not limited to genetic algorithm search methods.
Genetic algorithm (GA) methods are search algorithms based on the survival of the fittest theory applied
for a structured set of parameters [18]. GA-based optimization methods have also been used for the de-
sign optimization of controlled structures. Unlike conventional optimization techniques, GA-based ones
do not require continuity or differentiability of the objective function with respect to design variables.
Besides, they evaluate simultaneously a population of individuals (sets of parameters) and, hence, the
probability of converging to a non-global optimum is reduced. Another advantage of GA-based opti-
mization techniques is the possibility of considering both float and binary design parameters, allowing
for instance to account for different design configurations (topologies) in addition to material and geo-
metrical parameters.

This work extends previous ones in which modal filters based on optimally located arrays of piezo-
electric sensors applied to a free-free rectangular plate were designed and experimentally validated with
satisfactory results [19, 20, 21]. Differently from the previous works, in the present one, the mobility FRF
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is considered as target function for the evaluation of weighting coefficients, a larger number of options
are considered for the distribution of the piezoelectric sensors on a clamped plate and a piezoelectric
actuator is considered as excitation for the optimization of the resulting modal filter.

2. DESIGN OF MODAL FILTERS

The design of a modal filter from an array of sensors requires the output signals of each sensor to be
weighted and summed such that the responses of target vibration modes are maximized relative to those
of undesired vibration modes. Therefore, it is possible to consider the mobility FRF of an equivalent
single degree of freedom system with natural frequencyωi and damping factor ζi, corresponding to the
target i-th vibration mode, as the desired FRF of the modal filter output, which can be written as

gi (ω) =
2 jζiωiω

ω2
i −ω2 +2 jζiωiω

. (1)

Whenever the vibration modes are weakly damped and relatively well spaced, the resonance peaks
are well defined and, thus, (1) represents a realistic objective for the filtered FRF signal. Let Y be a
matrix with columns that represent the FRFs of the n selected sensors in the array and discretized in
a frequency domain [ω1, . . . ,ωm]. Let Gi = [gi (ω1) , . . . ,gi (ωm)] be the vector representing (1) in the
discrete frequency domain. The vector of coefficientsαi which equates the filtered output (weighted sum
of sensors outputs) to the one defined by Gi is the solution of Y1 (ω1) · · · Yn (ω1)

...
. . .

...
Y1 (ωm) · · · Yn (ωm)


 αi1

...
αin

=

 gi (ω1)
...

gi (ωm)

 . (2)

In general, the linear system defined by (2) admits only approximate solutions, which will be denoted
α†

i . The vector of weighting coefficients α†
i represents the best solution, in a least squares sense, for the

design of a modal filter which isolates the i-th vibration mode response. If several vibration modes are to
be considered simultaneously as target modes for the filter design, it is necessary to define G as the matrix
of target FRFs with dimension m× p, where p denotes the number of target modes. Consequently, the
approximate solution of (2), α†, is a matrix of dimension n× p, that is one column vector of weighting
coefficients for each one of the target modes. This may be written in a compact form as

Yα† = G. (3)

Actually, Yα† approximates G†, a matrix with columns that are the orthogonal projection of the
columns of G onto the space spanned by the columns of Y. The traditional Moore-Penrose pseudo-
inverse solution of (3) for a full column rank Y matrix (with columns that are linearly independent) may
be obtained by pre-multiplying (3) by YH,

YHYα† = YHG, such thatα† =
(
YHY

)−1 YHG. (4)

On the other hand, for a full column rank matrix, the inversion of YHY is unnecessary and computa-
tionally inefficient, since Y may be decomposed through QR decomposition, where Q is an orthonormal
matrix and R is upper triangular, such that Y = QR and (4) can be rewritten, after expansion and ac-
counting for QHQ = I, as

α† = R−1QHG. (5)

Notice that evaluating the inverse of R is not necessary, instead the upper triangular linear system,
Rα† = QHG, is solved through back substitution, which is computationally more efficient. For all the
cases studied here, the solution through QR decomposition was always convenient, since the FRF matrix
has had full column rank. If at least two columns of the FRF matrix are linearly dependent, the singular
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value decomposition (SVD) is the suitable method to approximate the least squares solution. In practice,
the truncation of matrix Y over a given frequency range will affect its QR decomposition and, thus,
the approximate solution of the linear system (3). Recent works have shown that there is a value for
truncation frequency such that all vibration modes inside a given frequency range are perfectly filtered,
except the target ones, whereas resonances larger that the truncation frequency are not filtered [6].

3. APPLICATION TO A PLATE WITH PIEZOELECTRIC SENSORS

In this section, the modal filter design technique presented in the previous section is applied to a plate
with bonded piezoceramic patches, acting as sensors, to analyze its effectiveness and evidence its limi-
tations. The host structure considered is a free rectangular aluminum plate, of dimensions 500×400×2
mm, and has twelve identical thickness-poled PZT-5H piezoceramic patches bonded to its upper surface.
The external excitation is also performed using four identical PZT-5H piezoceramic patches, serving as
actuators in this case, bonded to the lower surface of the plate. The four actuators are connected to the
same electrode and are placed such that reasonable control authority for the first vibration modes can
be obtained. The piezoceramic patches have dimensions 25×25×0.5 mm. Figure 1 presents a geomet-
ric description of the model. The material properties are: i) Aluminum – Young’s modulus 70 GPa,
Poisson’s ratio 0.33, mass density 2700 kg/m3; and ii) PZT-5H – mass density 7500 kg/m3, and elas-
tic cE

11 = cE
22 = 127 GPa, cE

33 = 117 GPa, cE
12 = 80.2 GPa, cE

13 = 84.7 GPa, cE
44 = cE

55 = 23.0 GPa,
cE

66 = 23.5 GPa, piezoelectric d31 = d32 = −274 pCN−1, d33 = 593 pCN−1, d15 = d24 = 741 pCN−1

and dielectric εT
11 =ε

T
22 = 27.7 nFm−1, εT

33 = 30.1 nFm−1 constants.

10
25
12.5

500

400

10 25 10

Figure 1. Aluminum plate with twelve piezoceramic sensors bonded on the upper surface, placed arbi-
trarily within the 154 possible locations, and four piezoceramic actuators bonded on the lower surface
(dimensions in mm).

A classical sandwich plate finite element model recently developed was used. The three layers are
supposed to be made of transversely poled piezoelectric materials. Electrodes fully cover the top and
bottom skins of all layers so that only through-thickness electric field and displacement are considered.
For simplicity, all layers are assumed to be made of orthotropic piezoelectric materials, perfectly bonded
and in plane stress state. Kirchhoff-Love theory is retained for the sandwich beam surface layers, while
the core is assumed to behave as a Reissner-Mindlin plate. A four-node rectangular finite element, with
7 mechanical and 3 electrical degrees of freedom (dof) per node, was considered for the discretization
of the sandwich plate. The nodal mechanical dof are the four in-plane displacements of the upper and
lower surface layers, the transverse displacement and its derivatives with respect to the two in-plane
coordinates. The nodal electrical dof are the electric displacements (electric charge surface density) on
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each of the three layers. During assembling procedure, equipotential boundary conditions are imposed to
piezoelectric patches connected to the same electrode. Through post-processing, the model allows either
electric charge or voltage outputs.
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Figure 2. Finite element mesh, mode shapes and natural frequencies for the first nine vibration modes
of the plate with arbitrarily distributed piezoceramic patches.

Table 1. First twenty natural frequencies of the aluminum plate with bonded piezoceramic patches.
Mode 1 2 3 4 5 6 7 8 9 10
Frequency (Hz) 101.2 171.1 221.6 285.7 294.8 402.4 415.7 458.6 481.6 561.6
Mode 11 12 13 14 15 16 17 18 19 20
Frequency (Hz) 589.1 662.6 674.0 735.4 742.0 763.3 837.0 924.7 936.7 982.5

Figure 2 shows the finite element mesh used for the modal analysis of an arbitrary distribution of the
piezoelectric sensors. It also shows the first nine vibration modes of the plate with piezoelectric sensors
and actuator. The natural frequencies for the first twenty vibration modes, contained within a [0,1000] Hz
frequency range, are also shown in Table 1.

The frequency response functions between the applied voltage to the actuator, composed of four
piezoceramic patches bonded to the lower surface of the plate and connected to a single electrode, and
the voltage induced in the twelve piezoceramic sensors, bonded to the upper surface of the plate and
connected to independent circuits, are shown in Figure 3.

4. OPTIMIZATION OF SENSORS’ SPATIAL DISTRIBUTION

Previous analyses [19] have shown that although, in average, the number of modes, and thus the
frequency range of the modal filter, is limited by the number of sensors considered, properly selected
distributions could increase the frequency range, for a given number of sensors, or reduce the number
of sensors, for a given frequency range. Therefore, for a given number of sensors in a network, their
distribution could be optimized to enhance the performance of the resulting modal filters.

After some numerical simulations with straightforward distributions, it becomes clear that the relation
between the sensors’ network distribution and the filtering performance is quite complex, even when the
mode shapes are known. Hence, optimal solutions require a more advanced strategy. GAs are more
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Figure 3. Frequency response function between piezoelectric actuator and sensors.

suitable search methods in these cases when the research space is too large, strongly multimodal and
non-linear. It is chosen here to setup a GA search by defining a random initial population formed by
so-called individuals with chromosomes that are composed of twelve genes as illustrated in Figure 4.
Each gene is an integer number from 1 to 36 representing the sensor index. Therefore, one individual
represents a topology formed by the twelve sensors defined by its genes. A similar approach for the
optimization of sensors positioning was presented in [11, 19].

103 13 40 45 51 89 108 125 137 140 150

Figure 4. Arbitrary representation of a sensors’ network distribution candidate containing 12 sensors.

Following the standard GA evolutive process, the initial population is considered to evolve along a set
of generations through reproduction (crossover), mutation and selection operations. While reproduction
and mutation operations aim to provide diversity to the population, the selection operation aims to rank
individuals with respect to a fitness or objective function. Since this is a random search algorithm, the
optimal results are dependent on the initial population and on the reproduction, mutation and selection
parameters. However, it is expected that for a sufficiently large number of generations or size of the
initial population, the algorithm will converge to the global optimum.

Since any individual of the population is composed by twelve different integer numbers in the domain
[1,. . . ,154], a specific routine was written to build the initial population. For each individual, the routine
scrambles randomly a vector of integers from 1 to 154 and, then, the first 12 elements of the scrambled
vector define the corresponding individual. This procedure is repeated for all individuals in the initial
population. The selection of the first 12 elements in the scrambled vector does not imply a tendency
since the distribution of the sensor indices in the vector is equiprobable.

The mutation operation, considered in this work, consists in replacing one of the 12 genes (sensors),
selected randomly, of an individual by another one, selected randomly from the complementary group of
sensors, that is, from the 142 remaining sensors not present in the individual. This procedure prevents the
generation of an individual with repeated genes. The reproduction (crossover) operation combines the
initial and final sections of two individuals (parents) to form a new individual (child), where the breaking
position of the parents’ sequences (chromosomes) is defined randomly. In this case, the generation of an
individual with repeated genes is possible and, when this is the case, the fitness function of this individual
is not evaluated to save computational time; instead a small fitness value is attributed to it, such that its
selection probability is also small. The selection operation is based on a stochastic universal sampling
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algorithm, where the expectation of individuals in the population is evaluated from a fitness ranking.
Besides the choice of reproduction, mutation and selection operators, it is necessary to define the

size of the initial population (N), the number of best individuals (elite) which are kept unmodified from
one generation to another (Σ), the percentage of the population in each generation which are generated
by crossover (Tc) and the total number of generations the population evolves (Np). Once defined Tc,
the remaining part of population is generated by either the previous elite or mutation operation. Apart
from the procedures proposed for the construction of the initial populations, the mutation operation and
the parameters’ definition, the optimization was performed using operators and algorithms of MATLAB
Genetic Algorithm and Direct Search (GADS) Toolbox.

The objective of the present optimization is to find the topology of an array with twelve sensors that
maximizes the filtering quality, over a given frequency range, of modal filters designed to isolate a given
set of resonances of the structure. First, four cases were studied using the following as target vibration
modes to be isolate by the modal filters: {1}, {1,2}, {1,2,3} and {1,2,3,4}. The target frequency range is
[0, 750] Hz, which is higher than the limit frequencyωl = 600 Hz for the present case and, as shown in
Table 1, contains fifteen resonances (four aboveωl). Therefore, the FRF truncation frequency is defined
as ωt = 750 Hz such that, for an arbitrary sensors’ distribution, no filtering quality can be guaranteed
along the frequency range, while an optimal distribution can maximize this quality. For implementation
purposes, the objective function to be minimized is then defined as the residual error norm

J =
∥∥Gt −Ytα

†∥∥
2 . (6)

where Gt and Yt are the target and measured, by each sensor, FRFs truncated at frequency ωt and α†

is the vector of weighting coefficients, evaluated using Gt and the QR decomposition of matrix Yt in
(5). In the case where more than one target function is considered, the cost function J is defined as the
arithmetic mean of the residual error norm (6) for each individual modal filter (or target function).

Then, the sensors’ distribution is optimized in order to provide an effective modal filter aimed at
isolating a set of resonances simultaneously. This is done by considering a N-dof frequency response
function as target function, constructed from (1), such that

gs(ω) = ∑
i

gi(ω). (7)

As in the previous case, the N-dof frequency response function is represented by a vector in the
discrete frequency domain and is truncated at frequency ωt , leading to Gt . This vector is then used in
(5) to evaluate the vector of weighting coefficients α†. This then leads to three additional cases using
N-dof target functions composed of the response of the following vibration modes: {1,2}, {1,2,3} and
{1,2,3,4}.

5. RESULTS AND DISCUSSION

In this section, the results obtained for the modal filters with optimal topologies of arrays of sensors
are presented. Based on previous studies, the following parameters were set for the GA optimization:
initial population of 240 individuals, crossover rate at 40%, genic mutation rate at 4.6%, elite rate at
5% and termination criteria at 20 generations. The following figures present, for each one of the eight
cases studied, the normalized filter output, such that the amplitude at target resonances is unitary, and the
corresponding optimal distribution, in which the selected location for the twelve sensors are highlighted
from the original array of 154 possible locations.

Figure 5 shows that distribution optimization for the design of modal filters aimed at isolating the
first and second vibration modes has provided excellent performance up to 750 Hz, with filtering errors
below 1% and 2%, for the first and first two modes respectively. It is also possible to observe that the
sensors’ distribution is not straightforward.

Figure 6 shows the normalized filter output when the first three and four modes are considered in the
optimal design of the modal filters. For these cases, filtering is effective up to the truncation frequency
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Figure 5. Normalized outputs of the modal filters designed for the isolation of the first (left) and first
two (right) vibration modes.
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Figure 6. Normalized outputs of the modal filters designed for the isolation of the first three (left) and
first four (right) vibration modes.

of 750 Hz only and the unfiltered noise increases as the number of target modes increases, such that for
three and four target modes, the unfiltered noise is below 4%. This suggests that as the number of target
modes increases, it is harder to find a distribution that allows effective filtering for frequencies above the
limiting frequencyωl (600 Hz in the present case).

In the case where the target function is multimodal, the filtering performance was also satisfactory
with filtering errors below 4%, as shown in Figures 7, 8 and 9. It is worthwhile to notice that a multi-
modal response can be obtained by summing the individual weighting coefficients vectors such that the
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Figure 7. Normalized outputs of the modal filters designed for the simultaneous isolation of the first and
second vibration modes, using two methodologies for the distribution optimization: (a) minimization of
the error relative to a two-modes composed target function, (b) minimization of the mean errors relative
to one-mode target functions.
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Figure 8. Normalized outputs of the modal filters designed for the simultaneous isolation of the first
three vibration modes, using two methodologies for the distribution optimization: (a) minimization of
the error relative to a three-modes composed target function, (b) minimization of the mean errors relative
to one-mode target functions.

filter output simulates a multimodal target function by summing the approximation for the one-mode fre-
quency responses. This is also shown in Figures 7, 8 and 9 where one may observe that both approaches
lead to similar filtering performance although the sensors’ distribution is quite different. Therefore, these
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results indicate that it is more interesting to use the individual one-mode target functions for the distri-
bution optimization, since the resulting distribution may be effective for the isolation of the target modes
both individually and simultaneously.
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Figure 9. Normalized outputs of the modal filters designed for the simultaneous isolation of the first
four vibration modes, using two methodologies for the distribution optimization: (a) minimization of the
error relative to a four-modes composed target function, (b) minimization of the mean errors relative to
one-mode target functions.

6. CONCLUSIONS AND FUTURE WORKS

This work presented a methodology for the optimization of the spatial distribution of a network of
piezoelectric sensors with the objective of improving the performance of a set of modal filters. Genetic
algorithm optimization techniques were used for the selection of 12 sensors, from an array of 154 piezo-
ceramic sensors regularly distributed on an aluminum plate, which maximize the performance of a set of
modal filters, each one aiming at one of the first four vibration modes. The weighting coefficients, for
each modal filter, were evaluated using a QR decomposition of the complex frequency response func-
tion (FRF) matrix. Results have shown that the FRF inversion technique may provide high-performance
modal filters for frequencies up to 600 Hz in this case. It is also shown that the sensors’ distribution
optimization may yield effective filtering of resonances beyond 600 Hz and up to 750 Hz, with filtering
error depending on how many modal filters are considered in the design. Future works will be directed
to experimental validation and application of the proposed modal filters for active vibration control.
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