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Abstract 

This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with 

pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal 

direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an “H” configuration 

between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as 

is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum 

hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then 

compared to experimental measurement of the unit cell modulus in the horizontal direction over a pressure 

range up to 682 kPa. An increase in cell modulus of 200% is demonstrated experimentally, with a 

minimum change in cell geometry. A design study via simulation predicts that differential pressurization 

of the PAMs up to 1992 kPa can increase the cell modulus in the horizontal direction by a factor of 6.66. 

A design study considering parametric variation in cell angle, vertical to inclined wall length ratio, and 

PAM contraction ratios showed that changes in modulus of over 1000% were possible by differential 

pressurization of the PAMs. Both experiment and simulation show that this concept provides a way to 

decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-

plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the 

pressure supplied to the individual muscles. 

1. INTRODUCTION  

A recent study by Pontecorvo et al.
1
 proposed a framework in which rigid-link, pin-jointed hexagonal 

unit cells can be supported internally by a variety of passive inclusions – such as springs
1
, buckling 

beams
2
, or dampers

2,3
 – in order to tailor the in-plane behavior of the cells to specific functions. It was 

found that three inclusions between the vertices were necessary for the cell to be statically determinate. In 

the case of linear spring inclusions, expressions for the modulus of the cell in the vertical and horizontal 

directions were derived based on the stiffness of the springs
1
. 

This work builds on the concept proposed by Pontecorvo et al. by including pneumatic artificial 

muscles (PAMs) as semi-active, variable stiffness springs within the unit cell. PAMs were first patented 

by Gaylord
4
 in 1958 and used by McKibben as orthotic devices in the 1950s

5
. Each PAM consists of a 

cylindrical flexible rubber bladder surrounded by a braided mesh of fibers that are connected to end 

                                                 
*
 Corresponding author, E-mail: fgandhi@rpi.edu 



ICAST2014: 25
nd

 International Conference on Adaptive Structures and Technologies 
October 6-8th, 2014, The Hague, The Netherlands 

2 
 

fittings. When the bladder is inflated with pressure from a fluid (usually air), the radial expansion tensions 

the braided fibers and causes the muscle to contract axially. A characteristic of PAMs is that the stiffness 

of the actuator is directly proportional to pressure. Several researchers have explored using this property to 

vary the stiffness or elastic modulus of structures. Philen
6-10

, for example, has demonstrated 

experimentally that flexible fluidic matrix composite (F
2
MC) tubes can change modulus by a factor of 50. 

F
2
MCs are similar to PAMs but with fibers embedded in the bladder (in place of the external braided 

mesh) to form a composite cylinder. They are typically filled with high bulk modulus fluid rather than air. 

Philen
8
 and Chen et al.

11
 have investigated using F

2
MC tubes embedded within an elastomeric matrix to 

create variable stiffness panels. Kim et al.
12

 applied the F
2
MC in a similar way to create a variable bending 

stiffness composite beam. 

The current study presents a novel variable modulus structural element by incorporating PAMs within a 

hexagonal unit cell. Using an orthogonal arrangement of PAMs provides a way to largely decouple the 

length change of a PAM from the change in modulus to create a structural unit cell whose in-plane 

modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the 

pressure supplied to the individual muscles. These unit cells can then be repeated in-plane or stacked in 

layers to create a composite structure whose modulus and load-deformation coupling can be actively tuned 

using fluid pressure. The paper describes the fabrication of a pin-jointed hexagonal unit cell with two 

horizontal PAMs and one vertical PAM arranged in an “H” configuration, as seen in Figure 1.  The cell is 

loaded in the horizontal (x) direction and its modulus (Ex) is measured for increasing values of pressure in 

the PAMs. The measurements are compared to simulation results and the model is further used to predict 

the largest changes in modulus that could be achieved through differential pressurization of the horizontal 

and vertical PAMs. The paper provides an understanding of the mechanisms by which cell modulus 

change is achieved, and also presents a design study examining achievable modulus change in various cell 

geometries. 

 

 
 

(a) (b) 

Figure 1. (a) Top view and (b) isometric view of the prototype hexagonal cell with one vertical PAM and 

two horizontal PAMs 
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2. ANALYSIS 

2.1 PAM model 

The constitutive behavior of an individual PAM was modeled based on the modeling approach for 

PAMs developed by Kothera et al.
13

 A schematic on which their model is based is shown in Figure 2. The 

PAM comprises a tubular elastomeric bladder of active length L, outer radius R, wall thickness t, and 

elastic modulus E, over which a single fiber of length b is wrapped N times at an angle θb. Kothera et al. 

assume that the volume of the bladder material, Vb, does not change from its original volume, Vb0, as 

described in Equation 1, and use this relationship to find the bladder wall thickness t at any muscle length 

L. When pressurized to a pressure P, stresses in the bladder develop in the circumferential direction, σc, 

and in the axial direction, σz. The corresponding axial force in the bladder and tension, T, in the fiber are in 

equilibrium with the applied axial force, F, at the free end of the PAM. The result is Equation 2, which 

relates the applied axial force to the length of the PAM for a given pressure. This equation is used 

throughout the current work to simulate the force-displacement behavior of the individual PAMs and is 

integrated into the hexagonal unit cell to calculate its modulus. A non-cylindrical tip-shape correction was 

not applied to Equation 2 because it was not found to improve the correlation of the simulation with 

experiment, nor was friction included in the model. 

 𝑉𝑏 = 𝐿(𝜋𝑅2 − 𝜋(𝑅 − 𝑡)2) = 𝑉𝑏0 = 𝐿0(𝜋𝑅0
2 − 𝜋(𝑅0 − 𝑡0)

2) (1) 

 𝐹 =
𝑃(3𝐿2−𝑏2)

4𝑁2𝜋
+ 𝐸𝑉𝑏 (

1

𝐿0
−

1

𝐿
) + 𝑃 (

𝑉𝑏

𝐿
−

𝑡𝐿2

2𝜋𝑅𝑁2) +
𝐸𝐿

2𝜋𝑅𝑁2
(𝑡𝐿 − 𝑡0𝐿0) (2) 

Before introducing the PAMs into the hexagonal cells, tensile load versus contraction ratio (CR = 𝐿/
𝐿0) measurements for individual PAMs were obtained and compared to simulation results based on 

Equation 2. For the simulation, the two muscle parameters that were measured most precisely – the muscle 

active length and bladder wall thickness – were directly used as input parameters. Starting with initial 

estimates, the muscle braid length, b, initial radius, R0, and bladder elastic modulus, E, were adjusted to 

best match the experimental results. The values of bladder elastic modulus and initial radius were taken to 

be the same for both the horizontal muscles and the vertical muscle (since they were fabricated from the 

same tube). The final values chosen for the simulation are listed with the measured values in Table 1. 

Owing to the geometry of a regular hexagonal cell, the horizontal PAMs’ initial active length, L0, and 

braid length, b, are shorter than those of the vertical PAM. The values of b used in the simulation 

correspond to a braid angle of 53.58
o
 for the vertical PAM and 52.39

o
 for the horizontal PAMs. 

 
Figure 2. Schematic of Kothera et al.'s PAM force-balance model

13
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Table 1. PAM parameters 

Parameter 
Vertical PAM Horizontal PAMs 

Measured Simulation Measured Simulation 

L0 (m) 0.0909 0.0909 0.0507 0.0507 

b (m) - 0.1130 - 0.0640 

t0 (m) 0.0008 0.0008 0.0008 0.0008 

R0 (m) 0.0043 0.0048 0.0043 0.0048 

E (MPa) - 3 - 3 

 

 

Figure 3. Tensile force versus contraction ratio over a range of pressures for the vertical PAM. Dotted 

lines represent simulation, solid lines represent measured data. 

 

Figure 3 is a plot of the tensile force as a function of contraction ratio for the vertical PAM over a range 

of pressures up to 1992 kPa. The solid lines represent measured experimental data obtained from tests 

conducted in an Instron 4204 machine, and the dotted lines represent the simulation results based on the 

parameters listed in Table 1. The vertical muscle was tested at pressures from 131 to 1992 kPa up to a 

contraction ratio of 103%. The simulation is plotted at the same pressures as the experiment with an 

additional curve at 0 kPa, and up to a contraction ratio of 115%. At pressures below 441 kPa, the 

simulation slightly overpredicts the tensile force of the actuator vis-à-vis the experimental results. Above 

441 kPa the simulations slightly underpredict the experimental curves until the final pressure of 1992 kPa. 

This spread of the simulation results are sensitive to the chosen simulation parameters and the results 

presented in Figure 3 reflect the best fit of the simulation to the experiment over the range of pressures. 

For clarity, Figure 4 shows a comparison of the vertical PAM experimental and simulation results at a 

single pressure of 682 kPa. Overall, the slope of the simulated curve compares well with the experiment, 

but the predicted free length (corresponding to zero tensile force) is slightly higher than the experiment, 

and the simulation shows less nonlinearity (stiffening behavior) at higher contraction ratios. In the current 

study the PAMs never enter compression when arranged in the hexagonal cell for the range of pressures 

and displacements investigated. 

Results similar to those seen in Figure 3 are presented in Figure 5 for the horizontal PAMs. The 

experimental data (solid curves) represents the average of the two horizontal PAMs while the simulation 

results are presented by the dashed curves. The PAM blocked force and free length for increasing 

pressures (obtained from Figure 3 and 5) are summarized in Figure 6a and 6b, respectively. In Figure 6a, 
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the blocked force of the vertical PAM is larger than the blocked force of the horizontal PAMs in both 

simulation (by 11.4% at 1992 kPa) and experiment (by 9.9% at 1992 kPa). Likewise, in Figure 6b, the free 

length of the vertical PAM is always lower than the free length of the horizontal PAMs. If the initial braid 

angle, θb0, of the PAMs were equal, the simulation curves of the vertical and horizontal PAMs would lie 

on top of each other. The difference then corresponds to the difference in initial braid angle (53.58
o
 for the 

vertical muscle, and 52.39
o
 for the horizontal PAMs), which increases the blocked force and decreases the 

free length for the vertical PAM over the horizontal PAMs. The braid angle of the prototype PAMs is 

difficult to measure accurately, but the fact that this same trend is present in the experimental results 

indicates that the initial braid angle of the vertical PAM as fabricated is likely about a degree higher than 

the initial braid angle of the horizontal PAMs.   

 

 
Figure 4. Tensile force versus contraction ratio for the vertical PAM at 682 kPa. 

2.2 Hexagonal unit cell analysis and modulus calculation 

The pin-jointed hexagonal unit cell used in this study is based on the cell presented in Pontecorvo et 

al.
1
, a schematic of which is shown in Figure 7. The cell walls were rigid links and the pin-joints at the cell 

vertices highlighted the effects of the internal inclusions as these were not masked by the influence of cell 

wall bending. The basic unit cell is composed of inclined walls of length Llink that form an angle θ with the 

horizontal, vertical walls of length αLlink, and includes half the vertical wall, 𝛼𝐿𝑙𝑖𝑛𝑘 2⁄ , of the adjacent cells 

above and below the cell. The depth of the cell (into the page) is denoted as γ𝐿𝑙𝑖𝑛𝑘. Pontecorvo et al. 

showed that three spring elements connected between the vertices of the cell were necessary in order for 

the cell to be statically determinate and derived expressions for the modulus of the cell under both 

horizontal and vertical loading based on the stiffness of the three springs when arranged in the 

configuration shown in Figure 7. It was also demonstrated that the total modulus of the cell is given by the 

sum of the modulus due to the horizontal spring and the modulus due to the vertical spring.  
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Figure 5. Averaged tensile force versus contraction ratio over a range of pressures for the horizontal 

PAMs. Dashed lines represent simulation, solid lines represent measured data. 

 

 
 

  
(a) (b) 

Figure 6. Comparison of experimental and simulated (a) blocked force and (b) free length of the 

individual muscles. 
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Figure 7. A pin-jointed hexagonal unit cell with three linear spring inclusions (two horizontal and one 

vertical) oriented in an "H" pattern between the vertices of the cell.
1
 

 

The current study takes a similar approach to the calculation of the cell modulus, where the linear 

springs of the previous work are replaced by PAMs whose nonlinear behavior is represented by Equation 

2. Since the PAMs carry load in tension, they are sufficiently pre-tensioned such that even as the cell is 

subjected to tensile and compressive loading, the individual PAMs only operate in tension.   

To account for the introduction of the PAMs into the unit cell, consider the schematics of the unit cells 

loaded by an applied stress in the horizontal (x) direction depicted in Figure 8. The expressions for the 

stress applied in the horizontal direction, σx, and the strain in the horizontal direction, εx, are given by 

Equations 3 and 4, respectively. In Figure 8a where the two PAMs in the cell are oriented horizontally, 

𝐹𝑋 = 2𝐹𝐻, and similarly for Figure 8b where the PAM in the cell is oriented vertically, 𝐹𝑋 = −𝐹𝑉𝑐𝑜𝑡(𝜃), 
where 𝐹𝐻 and 𝐹𝑉 are the tensile forces produced by the horizontal and vertical PAMs calculated using 

Equation 2. The forces in the PAMs are a function of applied pressure and muscle contraction ratio. 𝐹𝐻 

and 𝐹𝑉 are functions of the active lengths of the horizontal and vertical muscles, which are related to the 

cell angle θ by Equations 5 and 6, respectively, where Lfitting is the length from the cell vertex to the active 

portion of the PAM. 

 𝜎𝑋 =
𝐹𝑋

𝐴𝑋
=

𝐹𝑋

2𝐿𝑙𝑖𝑛𝑘(𝑠𝑖𝑛(𝜃)+𝛼)𝛾𝐿𝑙𝑖𝑛𝑘
 (3) 

 𝜀𝑋 =
2𝐿𝑙𝑖𝑛𝑘(cos(𝜃)−cos(𝜃0))

2𝐿𝑙𝑖𝑛𝑘(cos(𝜃0))
=

(cos(𝜃)−cos(𝜃0))

(cos(𝜃0))
 (4) 

 𝐿𝐻 = 2𝐿𝑙𝑖𝑛𝑘𝑐𝑜𝑠(𝜃) − 2𝐿𝑓𝑖𝑡𝑡𝑖𝑛𝑔 (5) 

 𝐿𝑉 = 2𝐿𝑙𝑖𝑛𝑘𝑠𝑖𝑛(𝜃) + 𝛼𝐿𝑙𝑖𝑛𝑘 − 2𝐿𝑓𝑖𝑡𝑡𝑖𝑛𝑔 (6) 

 𝐹𝑋 = 2𝐹𝐻(P, 𝐶𝑅𝐻) − 𝐹𝑉(P, 𝐶𝑅𝑉)cot(𝜃) (7) 

If all three PAMs are arranged in the cell together, the total applied force in the x-direction is related to 

the force in the vertical and horizontal PAMs as given in Equation 7. The 2𝐹𝐻 term in Equation 7 

corresponds to the tensile force applied to the vertical cell walls by the horizontal PAMs which tends to 

pull the vertical walls together and increase the cell angle. This change in cell shape is resisted by the 

vertical PAM which applies a tensile force to the top and bottom cell vertices and acts to decrease the cell 

angle. The tensile force applied by the vertical PAM is transferred to the horizontal direction through the 

inclined cell walls and corresponds to the −𝐹𝑉𝑐𝑜𝑡(𝜃) term in Equation 7. 

The equilibrium angle of the cell (θ0) occurs when the magnitudes of these two opposing terms are 

equal and can be calculated by setting FX to zero in Equation 7. Figure 9 illustrates the balance between 

these two terms for different values of pressure in the horizontal and vertical PAMs from Figures 3 and 5 

(ratio of cell vertical to inclined wall length, α, is assumed to be 1). The solid experiment and dotted 
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simulation curves in Figure 9 labeled “Vertical PAM” are derived from the curves presented in Figure 3 

but have been converted to be functions of cell angle using Equation 6, and the force values have been 

multiplied by 𝑐𝑜𝑡(𝜃). As indicated by the left y-axis label, these curves represent the force applied by the 

vertical muscle in the horizontal direction. Similarly, the solid experiment and dashed simulation curves in 

Figure 9 labeled “Averaged Horizontal PAMs” are derived from the curves presented in Figure 5, but have 

also been converted to be functions of cell angle using Equation 5, and the force values have been scaled 

by a factor of 2. This set of curves, as indicated by the right y-axis label, represents the force applied by 

the horizontal muscles in the horizontal direction. For clarity, hysteresis has been removed from all the 

experimental curves in Figure 9 by averaging the upper and lower branches of each hysteresis loop to form 

a single curve. 

 

  
(a) (b) 

Figure 8. Schematic of a pin-jointed hexagonal unit cell with (a) two horizontal PAMs and (b) a vertical 

PAM, with a stress applied to the cell in the horizontal direction
1
. 

 

 
Figure 9. Tensile force versus cell angle in the horizontal direction for the vertical PAM and combined 

horizontal PAMs: solid curves are averaged experimental data and dashed curves are simulation. 

 



ICAST2014: 25
nd

 International Conference on Adaptive Structures and Technologies 
October 6-8th, 2014, The Hague, The Netherlands 

9 
 

The points in Figure 9 where the simulated curves for the vertical PAM cross those for the horizontal 

PAMs give the equilibrium angles for the cell (the experimental curves for individual PAMs outside the 

hexagonal cell were not measured to high enough contraction ratios to cross each other). From the figure it 

can be observed that when the vertical and horizontal PAMs are pressurized to the same level the change 

in cell angle is less than a degree with respect to the simulated zero-pressure equilibrium angle of 31.34
o
. 

Even when the vertical and horizontal PAMs are pressurized to unequal pressure levels, the equilibrium 

cell angles remain between 28
o
 and 34

o
. Consider as an example the case where the horizontal PAMs have 

zero pressure and the vertical PAM is pressurized to 682 kPa. The equilibrium cell angle is seen to be 

29.6
o
. Here, the vertical PAM has contracted as a result of being pressurized from an initial contraction 

ratio of 106.3% to 101.4%, while the horizontal PAMs extend to a high contraction ratio of 114.1% where 

the tension in the muscle rises rapidly. This nonlinear stiffening in the PAM at high contraction ratios 

prevents significant changes in equilibrium cell angle from the zero-pressure state even when there is a 

large difference is pressure between the horizontal and vertical PAMs. 

The slope of the force-displacement curve for the PAMs directly influences the modulus of the cell. In 

this study, cell modulus is calculated as a secant modulus, described by Equation 8, where the subscripts 

ΔF and -ΔF indicate a constant positive or negative increment in force applied to the cell about an 

equilibrium position (𝜃0). 

𝐸𝑥 =
𝜎𝑥𝛥𝐹 − 𝜎𝑥−𝛥𝐹
𝜀𝑥𝛥𝐹 − 𝜀𝑥−𝛥𝐹

=

𝐹𝑥𝛥𝐹
2𝛾𝐿𝑙𝑖𝑛𝑘

2(𝑠𝑖𝑛(𝜃𝛥𝐹) + 𝛼)
−

𝐹𝑥−𝛥𝐹
2𝛾𝐿𝑙𝑖𝑛𝑘

2(𝑠𝑖𝑛(𝜃−𝛥𝐹) + 𝛼)

(cos(𝜃𝛥𝐹) − cos(𝜃0))
(cos(𝜃0))

−
(cos(𝜃−𝛥𝐹) − cos(𝜃0))

(cos(𝜃0))

 (8) 

Equation 8 can be simplified to illustrate that the cell modulus is dominated by the slope of the PAM 

force versus contraction ratio curve, and is influenced secondarily by the equilibrium cell angle. The first 

step in the simplification is expressed as Equation 9.  

𝐸𝑥 =
𝐹𝑥𝛥𝐹(𝑠𝑖𝑛(𝜃−𝛥𝐹) + 𝛼) − 𝐹𝑥−𝛥𝐹(𝑠𝑖𝑛(𝜃𝛥𝐹) + 𝛼)

(cos(𝜃𝛥𝐹) − cos(𝜃−𝛥𝐹))

cos(𝜃0)

2𝛾𝐿𝑙𝑖𝑛𝑘
2(𝑠𝑖𝑛(𝜃𝛥𝐹) + 𝛼)(𝑠𝑖𝑛(𝜃−𝛥𝐹) + 𝛼)

 (9) 

𝐸𝑥 can be further simplified by redefining 𝑠𝑖𝑛(𝜃𝛥𝐹) and 𝑠𝑖𝑛(𝜃−𝛥𝐹) in terms of a small increment in cell 

angle Δθ  from the equilibrium position, and simplifying using the small angle assumption: 

𝑠𝑖𝑛(𝜃𝛥𝐹) = 𝑠𝑖𝑛(𝜃0 − 𝛥𝜃) = 𝑠𝑖𝑛(𝜃0) − 𝛥𝜃 cos(𝜃0)  (10) 

𝑠𝑖𝑛(𝜃−𝛥𝐹) = 𝑠𝑖𝑛(𝜃0 + 𝛥𝜃) = 𝑠𝑖𝑛(𝜃0) + 𝛥𝜃 cos(𝜃0) (11) 

Substitution of Equations 10 and 11 into Equation 9 yield 

𝐸𝑥

=
(𝐹𝑥𝛥𝐹−𝐹𝑥−𝛥𝐹)(𝑠𝑖𝑛(𝜃0) + 𝛼) + (𝐹𝑥𝛥𝐹+𝐹𝑥−𝛥𝐹)𝛥𝜃 cos(𝜃0)

(cos(𝜃𝛥𝐹) − cos(𝜃−𝛥𝐹))

cos(𝜃0)

2𝛾𝐿𝑙𝑖𝑛𝑘
2((𝑠𝑖𝑛(𝜃0) + 𝛼)2 − 𝛥𝜃2 cos2(𝜃0))

 
(12) 

Recognizing that (𝐹𝑥𝛥𝐹+𝐹𝑥−𝛥𝐹) = 0 and that 𝛥𝜃2 cos2(𝜃0) ≈ 0,  

𝐸𝑥 ≈
(𝐹𝑥𝛥𝐹−𝐹𝑥−𝛥𝐹)

(cos(𝜃𝛥𝐹) − cos(𝜃−𝛥𝐹))

cos(𝜃0)

2𝛾𝐿𝑙𝑖𝑛𝑘
2(𝑠𝑖𝑛(𝜃0) + 𝛼)

 (13) 

The corresponding trigonometric expressions using the small angle assumption for cosine are Equations 

14 and 15. 

𝑐𝑜𝑠(𝜃𝛥𝐹) = 𝑐𝑜𝑠(𝜃0 − 𝛥𝜃) = 𝑐𝑜𝑠(𝜃0) + 𝛥𝜃 sin(𝜃0) (14) 

𝑐𝑜𝑠(𝜃−𝛥𝐹) = 𝑐𝑜𝑠(𝜃0 + 𝛥𝜃) = 𝑐𝑜𝑠(𝜃0) − 𝛥𝜃 sin(𝜃0) (15) 

Substituting these expressions into the denominator in Equation 13, and defining 𝑑𝜃 = 2𝛥𝜃, Equation 13 

becomes 
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𝐸𝑥 ≈
𝐹𝑥𝛥𝐹−𝐹𝑥−𝛥𝐹

𝑑𝜃

cot(𝜃0)

2𝛾𝐿𝑙𝑖𝑛𝑘
2(𝑠𝑖𝑛(𝜃0) + 𝛼)

 (16) 

The numerator of the first term in Equation 16 is expanded by substitution of Equation 7. 

𝐹𝑥𝛥𝐹−𝐹𝑥−𝛥𝐹 = 2(𝐹𝐻𝛥𝐹 − 𝐹𝐻−𝛥𝐹) − (𝐹𝑉𝛥𝐹 cot(𝜃𝛥𝐹) − 𝐹𝑉−𝛥𝐹cot(𝜃−𝛥𝐹)) (17) 

Again, Equations 10, 11, 14, and 15 are used to simplify Equation 17 and higher order terms are discarded.  

𝐸𝑥 ≈
2(𝐹𝐻𝛥𝐹 −𝐹𝐻−𝛥𝐹)− (𝐹𝑉𝛥𝐹 −𝐹𝑉−𝛥𝐹) cot(𝜃0)

𝑑𝜃

cot(𝜃0)

2𝛾𝐿𝑙𝑖𝑛𝑘
2(𝑠𝑖𝑛(𝜃0) + 𝛼)

 (18) 

The differences in the numerator of the first term are defined as 𝑑𝐹𝐻 = 𝐹𝐻𝛥𝐹 − 𝐹𝐻−𝛥𝐹 and 𝑑𝐹𝑉 = 𝐹𝑉𝛥𝐹 −
𝐹𝑉−𝛥𝐹. Differentiating Equations 5 and 6 and denoting the initial horizontal and vertical muscle lengths 

𝐿𝐻0 and 𝐿𝑉0, 𝑑𝜃 can be expressed as: 

𝑑𝜃 = 
𝐿𝐻0𝑑𝐶𝑅𝐻

2𝐿𝑙𝑖𝑛𝑘𝑐𝑜𝑠(𝜃)
=

𝐿𝑉0𝑑𝐶𝑅𝑉
2𝐿𝑙𝑖𝑛𝑘𝑐𝑜𝑠(𝜃)

 (19) 

Equation 18 can thus be expressed in terms of the slope of the individual PAM force versus contraction 

ratios 𝑑𝐹𝐻/𝑑𝐶𝑅𝐻 and 𝑑𝐹𝑉/𝑑𝐶𝑅𝑉. 

𝐸𝑥 ≈ [
2

𝐿𝐻0

𝑑𝐹𝐻
𝑑𝐶𝑅𝐻

−
cot(𝜃0)

𝐿𝑉0

𝑑𝐹𝑉
𝑑𝐶𝑅𝑉

]
𝑐𝑜𝑠(𝜃) cot(𝜃0)

𝛾𝐿𝑙𝑖𝑛𝑘(𝑠𝑖𝑛(𝜃0) + 𝛼)
 (20) 

From Figures 3 and 5 it is observed that the slopes 𝑑𝐹𝐻/𝑑𝐶𝑅𝐻 and 𝑑𝐹𝑉/𝑑𝐶𝑅𝑉 assume high values with 

increasing pressure or at very high PAM contraction ratios. Furthermore, the modulus is dependent on the 

interplay between the horizontal and vertical PAMs. The term outside the brackets in Equation 20 shows 

that the cell modulus also has a dependence on the cell geometry.  

3. FABRICATION AND EXPERIMENTAL METHOD 

The PAMs are fabricated by bonding 1/8” NPT steel barbed hose fittings inside both ends of a length of 

6.35 mm outer diameter, 0.79 mm wall thickness latex tubing. A length of braided polyethylene 

terephthalate mesh sleeve, containing 120 0.19 mm diameter fibers, is then coated with epoxy at both ends 

and crimped over the latex tubing onto the end fittings using a 12.7 mm long, 9.34 mm inner diameter, 0.8 

mm wall thickness piece of 3003 aluminum tubing. 

The lengths of the muscles were designed such that for the same vertical and inclined wall lengths (α = 

1) the cell would have an equilibrium angle close to 30
o
, while pulling the muscles into a slightly pre-

tensioned state at zero pressure. This selection was made because hexagonal cellular structures with 30
o
 

cell angle and equal wall lengths are by far the most common. Measured values of the unpressurized 

active lengths of the muscles, L0, are given in Table 1. When assembled in the cell under no load, the 

vertical muscle was at a measured contraction ratio of 106.3%, and the two horizontal muscles were at a 

contraction ratio of 107.6%, giving the unit cell a measured equilibrium angle of 31.34
o
.  

The hexagonal cell itself is fabricated from dogbone-shaped aluminum links pinned together at their 

endpoints. Each link contains a ball bearing at both ends to decrease friction and further reduce 

contributions from sources other than the PAM stiffness to the modulus of the cell. Each wall of the 

hexagonal cell contains two links stacked in an order that allows the cell to be expanded to a multi-cell 

array if desired. The vertical walls of the cell also contain a third triangular-shaped link with a tab that can 

be gripped by an Instron machine for experimental testing, as seen in Figure 1. PAMs are connected 

between the vertices of the cell and supplied with air pressure by modified brass pressure fittings. The 

length from the pin to the active portion of each muscle (Lfitting) is listed in Table 2 along with the other 

cell parameters.     
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Table 2. Hexagonal unit cell parameters 

Llink (m) 0.1111 

Lfitting Horizontal (m) 0.0676 

Lfitting Vertical (m) 0.0650 

α 1 

γ 0.4140 

 

Figure 10 shows a photograph of the hexagonal cell with all three PAM inclusions fixed in an Instron 

model 4204 machine with a 5 kN load transducer. The cell is oriented such that the grips of the machine 

are holding the vertical walls of the cell to load it in the x-direction. Three sets of experiments were 

performed pressurizing only the two horizontal PAMs, only the vertical PAM, and pressurizing all three 

PAMs simultaneously. The PAMs were supplied industrial air from a 49L cylinder, pressurized to 17,237 

kPa, and regulated by a Harris model 721 pressure regulator. Pressure was measured after the regulator but 

before the PAMs using an Omega PX4100-1KGV pressure transducer and a National Instruments USB-

6212 data acquisition system. At each pressure, the Instron machine pulled the cell in tension to a load of 

200 N at a rate of 10 N/s, then reversed direction and applied a compressive load to -100 N, and finally 

returned to the initial equilibrium position of the cell. The maximum pressure for the experiments with all 

three PAMs in the cell was limited to 682 kPa to avoid PAM failure, but this limit was likely overly 

cautious as the individual PAMs performed at 1992 kPa without failure. Thus, high pressure simulation of 

the hexagonal cell presented in the following sections is plausible. 

 

 

Figure 10. Hexagonal cell with three PAM inclusions fixed in the Instron machine for loading in the 

horizontal direction. 
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Figure 11. Cell modulus in the horizontal direction as a function of pressure. 

 

 
Figure 12. Equilibrium cell angle. 

4. RESULTS 

Figure 11 shows the variation in the hexagonal cell modulus in the horizontal (x) direction with 

increasing pressure, where the data points are the measured values from experiment and the dashed curves 

represent the simulation results. There is good agreement between the experiment and simulation when all 

three PAMs are pressurized together, but the simulation overpredicts modulus by a maximum of 15% at 

682 kPa when only the horizontal PAMs are pressurized, and underpredicts modulus by 10% at 682 kPa 

when only the vertical PAMs are pressurized. As discussed in Section 2.2, the hexagonal cell’s initial 

geometry balances the forces generated by the vertical and horizontal PAMs. Therefore, increasing the 

pressure in all three PAMs equally is not an effective approach to increasing the modulus of the cell. The 

data shows that even when all three PAMs are pressurized to 1992 kPa, the increase in modulus is only 
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80%. Instead, the PAMs must be pressurized differentially to realize larger changes in modulus. The 

greatest change in modulus is achieved by pressurizing only the vertical PAM. Experimentally, an 

increase in modulus from 0.65 MPa to 1.95 MPa (a 200% increase) was measured at 682 kPa, and 

simulation indicates that at 1992 kPa the modulus would increase to 4.98 MPa (a 666% increase). The 

corresponding change in cell angle is 1.53
o
 for the experimental measurement at 682 kPa, and 2.75

o
 for the 

simulation at 1992 kPa, as shown in Figure 12. 

 

  
(a) (b) 

 
(c) 

Figure 13. Equilibrium contraction ratio as a function of pressure when (a) all three PAMs are pressurized 

(b) only the horizontal PAMs are pressurized and (c) only the vertical PAM is pressurized. 

Figure 13 shows a comparison of experimental measurements (symbols) and model predictions (dashed 

or dotted lines) for contraction ratios in the horizontal and vertical PAMs with increasing pressure. Recall 

from the discussion of Equation 20 that the modulus of the cell is determined by the slope of the individual 

PAM force versus contraction ratio curves. The highest slopes in Figure 3 and Figure 5 occur where the 

PAMs are unpressurized but at very high contraction ratios. Thus, the large increase in Ex seen in Figure 

11 by pressurizing the vertical PAM is achieved because this stretches the horizontal PAMs to very high 

contraction ratios. This reasoning is confirmed by Figure 13c, which shows that the highest contraction 

ratios occur in the horizontal PAMs when the vertical PAM is pressurized. This maximum modulus 

configuration depends heavily on the relative values of the muscle parameters, especially the initial 

contraction ratio of the muscles. 
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(a) (b) 

  
(c) (d) 

Figure 14. Simulated (a) Cell modulus in the horizontal direction in MPa (b) Equilibrium cell angle in 

degrees (c) Vertical PAM contraction ratio and (d) Horizontal PAM contraction ratio calculated over a 

range of differential pressures in the PAMs. 

Another point of note is that the simulation in Figure 13a captures the trend that as pressure is increased 

equally in all three PAMs, the horizontal PAMs produce slightly more force than the vertical PAM, 

causing the contraction ratio of the horizontal PAMs to decrease, the contraction ratio of the vertical PAM 

to increase, and the overall cell angle to increase slightly (Figure 12). Although the trends are captured by 

the simulation, in all pressurization cases there seems to be a vertical offset of approximately 250 kPa in 

the experiment compared with simulation. This may represent that the physical PAMs required some 

initial pressure to begin contracting. 

Consider Figure 14a, where the pressures in the vertical and horizontal PAMs vary independently from 

0 to 1992 kPa and the values of the contours are the cell modulus Ex in MPa. In the simulation and 

experiments discussed above, only data points along each of the Figure 14a axes and the y=x line were 

investigated. Figure 14a uses the simulation to fill in the operational space. As expected, the highest values 

of cell modulus fall far from the y=x line in the upper left and lower right corners of the plot where either 

the horizontal or the vertical PAMs are completely unpressurized, while the other is fully pressurized. The 

corresponding cell angles and contraction ratios in the horizontal and vertical muscles are plotted in Figure 

14b-d, respectively. In Figure 14b, pressurizing the vertical PAM is seen to decrease the cell angle while 

pressurizing the horizontal PAMs does the reverse. In Figures 14c and 14d, notice that the contraction 

ratios for a given muscle are never below 97% when the muscle is unpressurized, which means that the 
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muscles barely ever enter compression in the design space. In Figure 14c, moving along the x-axis, 

pressurizing the vertical PAM reduces its contraction ratio, but simultaneously pressurizing the horizontal 

PAM resists this contraction. In fact, high pressure in the horizontal PAMs with low-to-moderate pressure 

in the vertical PAM will force the vertical PAM to stretch. Similarly, in Figure 14d, moving up the y-axis, 

pressurizing the horizontal PAMs reduces their contraction ratios but simultaneously pressurizing the 

vertical PAMs resists this contraction. High pressure in the vertical PAMs with low-to-moderate pressure 

in the horizontal PAMs will force the horizontal PAMs to stretch. Figure 14a shows a maximum change in 

cell modulus (ΔEx) of 666% when the vertical PAM is pressurized to 1992 kPa and the horizontal PAM is 

left unpressurized. The cell angle reduces to 28.59
o
 from a zero-pressure equilibrium cell angle of 31.34

o
. 

The pressurized vertical PAM contraction ratio is 98.18% (down from a zero pressure contraction ratio of 

106.3%) and the unpressured horizontal PAM contraction ratio increases to 117.4% (up from a pressure of 

107.6% when no pressure was in the vertical PAMs). 

5. DESIGN STUDY 

In the previous section, the vertical and inclined walls of the cell had the same length (α=1), and the 

zero pressure equilibrium cell angle was held close to 30
o
. This section examines whether greater changes 

in modulus may be realized by pressurizing the PAMs in different cell geometries. The vertical to inclined 

wall length ratio is varied between α=0.5 to 2, and the zero pressure equilibrium cell angle is varied from 

θ=10
o
 to 50

o
. Further, for any given cell geometry, the PAM contraction ratios are varied as well. Four 

different values, a minimum of 100%, intermediate values of 104% and 107.6%, and a maximum value of 

108.3% are used for the vertical PAM. In comparison, the previous section considered only single values 

of 106.3% and 107.6% for the vertical and horizontal PAM contraction ratios, respectively. 

Figure 15 provides a flow chart of the process used to determine the maximum ΔEx achievable. For a 

selected value of cell geometry parameters, α and θ, the four different values of vertical PAM contraction 

ratio are considered. For each value, the horizontal PAM contraction ratio required for the cell to maintain 

the selected zero pressure equilibrium angle, θo, is calculated. This step assumes that the PAMs have the 

same initial fiber angles, unpressurized wall thickness, unpressurized radius, and bladder modulus used for 

simulation of the prototype (Table 1), but the active length changes based on the cell geometry. For a 

vertical PAM contraction ratio of 100%, the horizontal PAMs are at 100% contraction ratio, as well. But 

for vertical PAM contraction ratios greater than 100%, the horizontal PAMs need to be pre-stretched as 

well to balance the forces exerted on the cell by the vertical PAM, and to hold the cell in equilibrium at the 

desired angle. Figure 16 shows the horizontal PAM contraction ratio versus equilibrium cell angle for 

increasing values of vertical PAM contraction ratio (marked on the curves). For vertical PAM contraction 

ratios greater than 100%, the horizontal PAM contraction ratios are equal for cell angles ranging from 

30.59
o
 to 31.58

o
. For higher cell angles (steeper cells), the horizontal PAM contraction ratios are lower, 

while for lower cell angles (shallower cells), the horizontal PAMs are stretched to higher contraction 

ratios. Note that the results in Figure 16 are independent of α because force produced by a given muscle 

(which determines equilibrium angle) is dependent only on the contraction ratio, not the physical length of 

the muscle. 

For the current values of cell geometric parameters and PAM contraction ratios, the unstretched length 

of the vertical and horizontal PAMs is calculated assuming the prototype values of Lfitting and Llink. 
Provided the calculated PAM lengths are greater than a minimum threshold value, the cell modulus in the 

x-direction is calculated for the zero pressure and three maximum pressurization cases as described in 

Section 4 and listed in the 6
th
 step of Figure 15. For the maximum pressure cases a check was instituted to 

ensure that none of the PAMs within the cell were stretched beyond their physical limit. Equation 21, 

derived from Equation 1, describes the relationship between contraction ratio of the PAM and the bladder 

wall thickness. 
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Figure 15. Flow chart of the process used to determine the maximum achievable x-direction change 

in cell modulus over a range of contraction ratios, cell angles, and wall length ratios. 

 

𝑡 = 𝑅 − √𝑅2 −
1

𝐶𝑅
(𝑅0

2 − (𝑅0 − 𝑡0)
2)        (21) 

In order for t to be real, the quantity under the square root in Equation 21, which depends on contraction 

ratio, must be greater than zero. This limits the maximum contraction ratio of the vertical muscle to 

118.05% and the maximum contraction ratio of the horizontal muscles to 119.68%. If in any of the 

pressurized equilibrium states of the cell the muscles exceed these limits, that case is eliminated from 

consideration. 

For the feasible cases, the maximum change in cell modulus between the zero pressure state and one of 

the pressurized states is recorded, and the process is repeated for the next vertical muscle contraction ratio. 

After all contraction ratios are evaluated, the overall greatest change in cell modulus is determined for that 

point in the design space. The results of this design study are presented in Figure 17, where the labeled 

contours represent the maximum percent change in cell modulus relative to the zero pressure case. The 

gray shaded region in Figure 17 represents areas where maximum change in modulus is realized by 

pressurizing only the horizontal PAMs. Elsewhere, the maximum change is realized by pressuring only the 

vertical PAMs. The blacked out region at the extreme bottom left represents an infeasible area of the 

design space where the vertical PAM length is below a minimum threshold. 

Figures 18a and 18b consider a couple of design points in greater detail. For α=1 and θ0=20.5
o
, (in the 

grey region in Figure 17), Figure 18a plots the cell modulus as a function of pressure.  Clearly, the 

increase in modulus is greater when the horizontal PAMs are pressurized. In comparison, Figure 18b for 

α=1 and θ0=41.5
o
 (in the unshaded region in Figure 17) shows the greatest increase in modulus is achieved 

by pressuring only the vertical PAM.  Another point to note is that although the percent change in modulus 

for the case in Figure 18b is larger than that in Figure 18a, the magnitude of the maximum modulus in 
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Figure 18a is over 2.5 times larger than that in Figure 18b. Evidently, the low zero pressure modulus is a 

strong contributor to a high change in modulus in Figure 18b. 

 

 
Figure 16. Unpressurized horizontal PAM contraction ratios corresponding to the labeled prescribed 

values of vertical PAM contraction ratio for a range of equilibrium cell angles. 

 

 
Figure 17. Maximum change in cell modulus (%) as a function of vertical wall length ratio (α) and 

equilibrium cell angle. 
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Figure 19a presents the zero pressure modulus with reference to which the maximum increase in 

modulus in Figure 17 is calculated, and Figure 19b shows the corresponding change in cell angle due to 

pressurization. These two plots, combined with Figure 17, serve as useful guides for selecting the best cell 

geometry in the design space that maximizes ΔEx, while considering other constraints. There are three 

regions in Figure 17 where ΔEx exceeds 1400%: the top left region, the top middle region, and the bottom 

left/middle region. Of those regions, Figure 19b shows that the top left of the plot has the highest changes 

in cell angle (exceeding 10
o
), which is generally undesirable unless active shape change is a design goal. 

Therefore, the bottom left/middle region and the top middle region are more ideal for generating large 

changes in cell modulus for low changes in cell angle. Figure 19a shows that of these two regions, the top 

middle has a lower zero pressure cell modulus of less than 0.2 MPa and therefore also a lower pressurized 

cell modulus. Thus, the region that achieves the highest absolute cell modulus while also allowing for 

large ΔEx and low changes in cell angle is the region below α=0.7 between zero pressure equilibrium cell 

angles of 20
o
 and 30

o
. The maximum modulus in this region of 414 MPa is achieved at α=0.5 and θ0=20

o
, 

where the cross-sectional area of the cell in the x-direction is at the minimum possible value and the 

horizontal PAMs are fully pressurized to resist loading in the x-direction. In this region, however, the 

length of the vertical PAM is very short. A more reasonable design point with a feasible muscle length in 

the same region is α=0.7 and θ0=25
o
. The system parameters associated with this design point are listed in 

Table 3. 

The reason for the distinct regions evident in Figure 19 is the discrete choices for starting vertical PAM 

contraction ratio used in the iterative loop of the design study. Figure 20a shows the initial contraction 

ratio of the vertical PAM corresponding to the results presented in Figures 17 and 19. Recall that within 

the loop, a check was made to eliminate any cell configurations where the pressurization of the PAMs 

caused the contraction ratio of the orthogonal PAMs to exceed the maximum limit. At high starting 

contraction ratios of the vertical PAM, all the PAMs within the cell were pre-strained before 

pressurization and therefore exceeded the contraction ratio limit when pressurized more easily. When this 

limit was exceeded, the pressurization case was eliminated from consideration. Therefore, the majority of 

maximum ΔEx cases occurred at low starting vertical PAM contraction ratios (100% and 104%) because 

the higher starting contraction ratio cases (107.6% and 108.3%) had exceeded the limits of the muscles. 

 

  
(a) (b) 

Figure 18. Cell modulus as a function of pressure for (a) α=1 and θ0=20.5 and (b) α=1 and θ0=41.5. 
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(a) (b) 

Figure 19. (a) Zero pressure cell modulus corresponding to the maximum change in cell modulus (MPa) 

and (b) change in cell angle corresponding to maximum change in cell modulus (deg). 

 

Table 3. System parameters at the design point where α=0.7 and θ0=25
o
. 

PAM Parameters 

LH 66.2 mm 

LV 42.7 mm 

Horizontal θb0 52.39
o
 

Vertical θb0 53.58
o
 

t0 0.8 mm 

R0 4.8 mm 

E 3 MPa 

Cell Parameters 

Llink 111.1 mm 

LHfit 67.6 mm 

LVfit 64.5 mm 

α 0.7 

γ 0.4140 

θ0 25
o
 

Resulting System Parameters 

Horizontal PAMs Eq. CR 100% 

Vertical PAM Eq. CR 100% 

Modulus, 0 kPa 0.81 MPa 

Max. Modulus, 1992 kPa (Only 

Horizontal PAMs Pressurized) 
11.00 MPa 

Change in Cell Angle 1.96
o
 

Max. Change in Modulus 1258% 
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(a) (b) 

Figure 20. (a) Unpressurized equilibrium contraction ratio of the vertical PAM corresponding to the 

maximum change in cell modulus and (b) maximum pressurized equilibrium contraction ratio (%) of 

any PAM within the cell. 

 
Figure 20b plots the maximum contraction ratio of any PAM within the cell in the pressurized 

equilibrium state corresponding to the maximum ΔEx. This figure shows that at the borders of the regions 

in Figure 20a, the contraction ratio of the PAMs have been pushed to the limit. At the borders of the gray 

region in Figure 20b, which corresponds to the region where the horizontal PAMs are pressurized to 

achieve a maximum ΔEx, the maximum contraction ratio in the vertical PAM does not exceed the 118% 

limit. In the region where the vertical PAMs are fully pressurized, maximum ΔEx is achieved by pre-

straining the horizontal PAMs as much as possible. Again, at the borders where the zero-pressure vertical 

PAM contraction ratio changes in Figure 20a, the maximum horizontal PAM contraction ratio has been 

pushed nearly to its limit of 119.68%. If the parametric study for maximum ΔEx were performed using 

smaller increments in vertical PAM contraction ratio values, every value in Figure 20b would be nearly 

equal to either the horizontal or the vertical PAM contraction ratio limit. 

6. SUMMARY AND CONCLUSIONS 

This work has presented a novel variable modulus cellular structure comprised of hexagonal unit cells 

with PAM inclusions. The cell considered is a pin-jointed hexagonal unit cell, loaded in the horizontal 

direction, with three PAMs oriented in an “H” pattern between the vertices of the cell: one vertical PAM 

and two horizontal PAMs. A model of the PAMs assuming a constant volume of bladder material was 

shown to compare well with force-displacement measurements of the individual PAMs used within the 

cell. A method for calculation of the hexagonal cell modulus based on an approach used for linear springs 

within the cell was introduced, as was an expression for the balance of tensile forces between the 

horizontal and vertical PAMs. 

An aluminum hexagonal unit cell was fabricated and simulation of the hexagonal cell with PAM 

inclusions was then compared to experimental measurement of the unit cell modulus in the horizontal 

direction with the PAMs pressurized over a pressure range up to 682 kPa. An increase in cell modulus by 

a factor of 2 and a corresponding change in cell angle of only 1.53
o
 were demonstrated experimentally. A 

design study via simulation predicts that differential pressurization of the PAMs up to 1992 kPa can 

increase the cell modulus in the horizontal direction by a factor of 6.66 with a change in cell angle of only 

2.75
o
, and that by varying the cell geometry changes in modulus greater than 1000% are possible while 
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maintaining changes in cell angle below 3
o
. The experiment and simulation show that this concept 

provides a way to largely decouple the length change of a PAM from the change in modulus to create a 

structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of 

PAMs within the cell and the pressure supplied to the individual muscles. 
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